【题目】已知函数f(x)=2x-
,x∈(0,1].
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在x∈(0,1]上是减函数,求实数a的取值范围.
【答案】(1)[2
,+∞)(2)(-∞,-2]
【解析】
(1)当a=-1时,f(x)=2x+
,
因为0<x≤1,所以f(x)=2x+
≥2
=2
,当且仅当x=
时,等号成立,
所以函数y=f(x)的值域是[2
,+∞).
(2)(解法1)设0<x1<x2≤1,
由f(x1)-f(x2)=
=2(x1-x2)+
=
,
因为函数y=f(x)在x∈(0,1]上是减函数,
所以f(x1)-f(x2)>0恒成立,
所以2x1x2+a<0,即a<-2x1x2在x∈(0,1]上恒成立,
所以a≤-2,即实数a的取值范围是(-∞,-2].
(解法2)由f(x)=2x-
,知f′(x)=2+
,
因为函数y=f(x)在x∈(0,1]上是减函数,
所以f′(x)=2+
≤0在x∈(0,1]上恒成立,
即a≤-2x2在x∈(0,1]上恒成立,
所以a≤-2,即实数a的取值范围是(-∞,-2].
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成
,
,
,
,
,
六组,得到如下频率分布直方图.
![]()
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在
内的学生中随机抽取2人,求恰有1人答对题数在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,顶点
在底面
上的射影恰为点
,且![]()
![]()
(1)证明:平面![]()
平面
;
(2)求棱
与
所成的角的大小;
(3)若点
为
的中点,并求出二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,以
为坐标的动点
的轨迹记为曲线
.
![]()
(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
和
,求四边形
面积的最大值,并求此时的
的值.
(3)根据曲线
的方程,研究曲线
的对称性,并证明曲线
为椭圆.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C的方程为
,O为坐标原点,A为椭团的上顶点,
为其右焦点,D是线段
的中点,且
.
(1)求椭圆C的方程;
(2)过坐标原点且斜率为正数的直线交椭圆C于P,Q两点,分别作
轴,
轴,垂足分别为E,F,连接
,
并延长交椭圆C于点M,N两点.
(ⅰ)判断
的形状;
(ⅱ)求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥
中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥
的体积为![]()
![]()
(1)求三棱锥
的高;
(2)在线段AB上取一点D,当D在什么位置时,
和
的夹角大小为 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
![]()
(1)求椭圆
的方程;
(2)已知
为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的
坐标;若不存在说明理由;
(3)若过
点作直线
的平行线交椭圆
于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点,一条垂直于
轴的直线分别与线段
和直线
交于点
.
![]()
(1) 若
,求
的值;
(2) 若
,
为线段
的中点,求证: 直线
与该抛物线有且仅有一个公共点.
(3) 若
,直线
的斜率存在,且与该抛物线有且仅有一个公共点,试问
是否一定为线段
的中点? 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明);
(2)将数列
依次按1项、2项、3项、4项循环地分为
,
,
,
;
,
,
,
;
,…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com