【题目】如图,曲线
由左半椭圆
和圆
在
轴右侧的部分连接而成,
,
是
与
的公共点,点
,
(均异于点
,
)分别是
,
上的动点.
(Ⅰ)若
的最大值为
,求半椭圆
的方程;
(Ⅱ)若直线
过点
,且
,
,求半椭圆
的离心率.
![]()
科目:高中数学 来源: 题型:
【题目】经过长期观察得到:在交通繁忙的时段内,某公路汽车的车流量
(千辆/小时)与汽车的平均速度
(千米/小时)之间的函数关系为![]()
(1)在该时段内,当汽车的平均速度
为多少时,车流量最大,最大车流量为多少?(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
, ![]()
(Ⅰ)当
时,求函数
的单调递减区间;
(Ⅱ)若
时,关于
的不等式
恒成立,求实数
的取值范围;
(Ⅲ)若数列
满足
,
,记
的前
项和为
,求证:
.
【答案】(I)
;(II)
;(III)证明见解析.
【解析】试题分析:(Ⅰ)求出
,在定义域内,分别令
求得
的范围,可得函数
增区间,
求得
的范围,可得函数
的减区间;(Ⅱ)当
时,因为
,所以
显然不成立,先证明因此
时,
在
上恒成立,再证明当
时不满足题意,从而可得结果;(III)先求出等差数列的前
项和为
,结合(II)可得
,各式相加即可得结论.
试题解析:(Ⅰ)由
,得
.所以![]()
令
,解得
或
(舍去),所以函数
的单调递减区间为
.
(Ⅱ)由
得, ![]()
当
时,因为
,所以
显然不成立,因此
.
令
,则
,令
,得
.
当
时,
,
,∴
,所以
,即有
.
因此
时,
在
上恒成立.
②当
时,
,
在
上为减函数,在
上为增函数,
∴
,不满足题意.
综上,不等式
在
上恒成立时,实数
的取值范围是
.
(III)证明:由
知数列
是
的等差数列,所以![]()
所以![]()
由(Ⅱ)得,
在
上恒成立.
所以
. 将以上各式左右两边分别相加,得
.因为![]()
所以![]()
所以
.
【题型】解答题
【结束】
22
【题目】已知直线
, (
为参数,
为倾斜角).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的直角坐标方程为
.
(Ⅰ)将曲线
的直角坐标方程化为极坐标方程;
(Ⅱ)设点
的直角坐标为
,直线
与曲线
的交点为
、
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:
,
,
,
,
,
,得到如图所示的频率分布直方图.问:
![]()
(Ⅰ)求这80名群众年龄的中位数;
(Ⅱ)若用分层抽样的方法从年龄在
中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln (x+1)-
-x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<-
(a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
,点
是单位圆与
轴的正半轴的交点.
![]()
(1)若
,求
.
(2)已知
,
,若
是等边三角形,求
的面积.
(3)设点
为单位圆上的动点,点
满足
,
,
,求
的取值范围.当
时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数).
(1)求
和
的直角坐标方程;
(2)若曲线
截直线
所得线段的中点坐标为
,求
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在边长为8的正三角形ABC中,E,F依次是AB,AC的中点,
,D,H,G为垂足,若将
绕AD旋转
,求阴影部分形成的几何体的表面积与体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com