【题目】对于数列
,定义
为
的“优值”.现已知某数列的“优值”为
,记数列
的前
项和为
,若对一切的
,都有
恒成立,则实数
的取值范围为___________.
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
![]()
(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为
,
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在
内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点
为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线
的参数方程为
,曲线
的极坐标方程为![]()
(1)求曲线
的直角坐标方程
(2)设直线
与曲线
相交于
两点,
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,对于点
,若函数
满足:
,都有
,就称这个函数是点A的“限定函数”.以下函数:①
,②
,③
,④
,其中是原点O的“限定函数”的序号是______.已知点
在函数
的图象上,若函数
是点A的“限定函数”,则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
经常网购 | 偶尔或不用网购 | 合计 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合计 |
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为
,求随机变量
的数学期望和方差.
参考公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在三棱台
中,
,
,
.
![]()
(1)求证:
;
(2)过
的平面
分别交
,
于点
,
,且分割三棱台
所得两部分几何体的体积比为
,几何体
为棱柱,求
的长.
提示:台体的体积公式
(
,
分别为棱台的上、下底面面积,
为棱台的高).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的短轴两端点与左焦点围成的三角形面积为3,短轴两端点与长轴一端点围成的三角形面积为2,设椭圆
的左、右顶点分别为
是椭圆
上除
两点外一动点.
(1)求椭圆
的方程;
(2)过椭圆
的左焦点作平行于直线
(
是坐标原点)的直线
,
与曲线
交于
两点,点
关于原点
的对称点为
,求证:
成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的离心率为
,左、右焦点分别为![]()
,点D在椭圆C上,
的周长为
.
(1)求椭圆C的标准方程;
(2)过圆
上任意一点P作圆E的切线l,若l与椭圆C交于A,B两点,O为坐标原点,求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com