(本题满分14分)
已知椭圆
经过点(0,
),离心率为
,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且
,当直线l的倾斜角变化时,探求
的值是否为定值?若是,求出
的值,否则,说明理由;
(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
解:(Ⅰ)易知
因为![]()
∴椭圆C的方程
…………………………3分
(2)易知直线l的斜率存在,设直线l方程
且l与y轴交于
设直线l交椭圆于![]()
由
得![]()
……………………………………6分
又由![]()
,同理
…………………………………………8分
![]()
所以当直线l的倾斜角变化时,
的值为定值-
;…………………………10分
(3)当直线l斜率不存在时,直线
轴,则ABED为矩形,由对称性知,AE与BD相交FK的中点N(
,0),
猜想,当直线l的倾斜角变化时,AE与BD相交于定点N(
,0)……………………11分
证明:由(2)知![]()
当直线l的倾斜角变化时,首先证直线AE过定点N(
,0),
∶![]()
当
时,![]()
=![]()
=
点N(
,0),在直线lAE上,同理可证,点N(
,0)
也在直线lBD上;∴当m变化时,AE与BD相交于定点(
,0)…………14分
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com