【题目】设点
为抛物线
上的动点,
是抛物线的焦点,当
时,
.
![]()
(1)求抛物线
的方程;
(2)过点
作圆
:
的切线
,
,分别交抛物线
于点
.当
时,求
面积的最小值.
【答案】(1)
(2)最小值
.
【解析】
(1)利用抛物线的焦半径公式求得
值,进而得到抛物线方程;
(2)设过点
的切线为
,利用圆心到直线的距离等于半径得到
,化简并借助韦达定理,可得
,
,设
,则直线
,与抛物线联立,再由根与系数的关系可得
,同理
,再设直线
,利用弦长公式求弦长,由点到直线距离公式求
到直线
的距离,代入三角形面积公式,换元后利用基本不等式和二次函数求最小值.
(1)当
时,
,
所以
,故所求抛物线方程为
.
(2)点
为抛物线
上的动点,则
,
设过点
的切线为
,
则
,
得
,
是方程(*)式的两个根,
所以
,
,
设
,
因直线
,与抛物线
交于点A,
则
得
,
所以
,即
,
同理
,
设直线
,
则
,
,
又
,
,
所以![]()
![]()
![]()
令
,
,
当且仅当
,即
时,
取得最小值
.
科目:高中数学 来源: 题型:
【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员
人,其中
岁及以上的共有
人.这
人中确诊的有
名,其中
岁以下的人占
.
确诊患新冠肺炎 | 未确诊患新冠肺炎 | 合计 | |
50岁及以上 | 40 | ||
50岁以下 | |||
合计 | 10 | 100 |
(1)试估计
岁及以上的返乡人员感染新型冠状病毒引起的肺炎的概率;
(2)请将下面的列联表补充完整,并判断是否有
%的把握认为是否确诊患新冠肺炎与年龄有关;
参考表:
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中
寸表示115寸
分(1寸=10分).
节气 | 冬至 | 小寒 (大雪) | 大寒 (小雪) | 立春 (立冬) | 雨水 (霜降) | 惊蛰 (寒露) | 春分 (秋分) | 清明 (白露) | 谷雨 (处暑) | 立夏 (立秋) | 小满 (大暑) | 芒种 (小暑) | 夏至 |
晷影长 (寸 | 135 |
|
|
|
|
| 75.5 |
|
|
|
|
| 16.0 |
已知《易经》中记录某年的冬至晷影长为130.0寸,夏至晷影长为14.8寸,按照上述规律那么《易经》中所记录的春分的晷影长应为( )
A.91.6寸B.82.0寸C.81.4寸D.72.4寸
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
-x2+ef′(
)x.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若存在x1,x2(x1<x2),使得f(x1)+f(x2)=1,求证:x1+x2<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率;
(2)根据统计数据估计图书分类错误的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,
分别为椭圆的左右焦点,点
为椭圆
上的一动点,
面积的最大值为2.
(1)求椭圆
的方程;
(2)直线
与椭圆
的另一个交点为
,点
,证明:直线
与直线
关于
轴对称.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )
![]()
A.消耗1升汽油,乙车最多可行驶5千米
B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C.甲车以80千米/小时的速度行驶1小时,消耗8升汽油
D.某城市机动车最高限速80千米/小时.相同条件下,在该市用乙车比用丙车更省油
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com