(本小题满分14分) 如图,已知抛物线与坐标轴分别交于A
、B
、C
三点,过坐标原点O的直线
与抛物线交于M、N两点.分别过点C、D
作平行于
轴的直线
、
.(1)求抛物线对应的二次函数的解析式;(2)求证:以ON为直径的圆与直线
相切;(3)求线段MN的长(用
表示),并证明M、N两点到直线
的距离之和等于线段MN的长.
![]()
(1)
;(2)见解析;
(3)![]()
【解析】此题属于二次函数的综合题目,涉及了待定系数法求函数解析式、根与系数的关系,梯形的中位线定理,综合性较强,关键是要求同学们能将所学的知识融会贯通.
(1)设函数解析式为y=ax2+bx+c,然后利用待定系数法求解即可;
(2)设M(x1,y1),N(x2,y2),然后代入抛物线方程,用含y2的式子表示出ON,设ON的中点E,分别过点N、E向直线l、作垂线,垂足为P、F,利用梯形的中位线定理可得出EF,与所求ON的值进行比较即可得出结论;
(3)过点M作MH丄NP交NP于点H,在RT△MNH中表示出MN2,结合直线方程将MN2化简,求出MN,然后延长NP交l2于点Q,过点M作MS丄l2交l2于点S,则MS+NQ=y1+2+y2+2,利用根与系数的关系,求出
,并代入,从而可得出结论。
解答:(1)设抛物线对应二次函数的解析式为![]()
由![]()
,解得
,所以
……………………4分
(2)设
,因为点M、N在抛物线上,
![]()
所以
,
,所以
;
又![]()
=
,所以ON=
,又因为
,
所以ON![]()
设ON的中点为E,分别过点N、E向直线
作垂线,垂足分别为P、F,
则
所以ON=2EF,
即ON的中点到直线
的距离等于ON长度的一半, 所以以ON为直径的圆与直线
相切.
…………………………………9分
(3)过点M作MH⊥NP交NP于点H,则![]()
![]()
又
,所以![]()
所以
;
又因为点M、N既在
的图象上,又在抛物线上,所以
,即
,
所以
,
所以
,所以
所以
延长NP交
于点Q,过点M作MS⊥交
于点S,
则MS+NQ=![]()
又
=
所以MS+NQ=![]()
即MN两点到
距离之和等于线段MN的长.…………………………………………14
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com