已知函数
(
,
,
且
)的图象在
处的切线与
轴平行.
(1)确定实数
、
的正、负号;
(2)若函数
在区间
上有最大值为
,求
的值.
(1)
,
;(2)
.
解析试题分析:(1)先求导数,因为切线与
轴平行,所以导数为0,列出等式,判断出
的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于
,解出
的值.
试题解析:(1)
1分
由图象在
处的切线与
轴平行,
知
,∴
. 2分
又
,故
,
. 3分
(2) 令
,
得
或
. 4分
∵
,令
,得
或![]()
令
,得
.
于是
在区间
内为增函数,在
内为减函数,在
内为增函数.
∴
是
的极大值点,
是极小值点. 5分
令
,得
或
. 6分
分类:① 当
时,
,∴
.
由
解得
, 8分
② 当
时,
, 9分
∴
.
由
得
. 10分
记
,
∵
, 11分
∴
在
上是增函数,又
,∴
, 12分
∴
在
上无实数根. 13分
综上,
的值为
.  
科目:高中数学 来源: 题型:解答题
(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线
排,在路南侧沿直线
排,现要在矩形区域
内沿直线将
与
接通.已知
,
,公路两侧排管费用为每米1万元,穿过公路的
部分的排管费用为每米2万元,设
与
所成的小于
的角为
.![]()
(Ⅰ)求矩形区域
内的排管费用
关于
的函数关系式;
(Ⅱ)求排管的最小费用及相应的角
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是实数,函数
,
和
,分别是
的导函数,若
在区间
上恒成立,则称
和
在区间
上单调性一致.
(Ⅰ)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(Ⅱ)设
且
,若函数
和
在以
为端点的开区间上单调性一致,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知常数
、
、
都是实数,函数
的导函数为
,
的解集为
.
(Ⅰ)若
的极大值等于
,求
的极小值;
(Ⅱ)设不等式
的解集为集合
,当
时,函数
只有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
为自然对数的底数).
(Ⅰ)当
时,求
的单调区间;
(Ⅱ)若函数
在
上无零点,求
最小值;
(Ⅲ)若对任意给定的
,在
上总存在两个不同的![]()
),使
成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com