已知
为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(Ⅰ)若函数
在区间![]()
上存在极值,求实数
的取值范围;
(Ⅱ)如果对任意的
,
,有
,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=
+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校操场边有一条小沟,沟沿是两条长150米的平行线段,沟宽
为2米,,与沟沿垂直的平面与沟的交线是一段抛物线,抛物线的顶点为
,对称轴与地面垂直,沟深2米,沟中水深1米.
(Ⅰ)求水面宽;
(Ⅱ)如图1所示形状的几何体称为柱体,已知柱体的体积为底面积乘以高,求沟中的水有多少立方米?![]()
(Ⅲ)现在学校要把这条水沟改挖(不准填土)成截面为等腰梯形的沟,使沟的底面与地面平行,沟深不变,两腰分别与抛物线相切(如图2),问改挖后的沟底宽为多少米时,所挖的土最少?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
.
(1)若
,则
,
满足什么条件时,曲线
与
在
处总有相同的切线?
(2)当
时,求函数
的单调减区间;
(3)当
时,若
对任意的
恒成立,求
的取值的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
为常数),其图象是曲线
.
(1)当
时,求函数
的单调减区间;
(2)设函数
的导函数为
,若存在唯一的实数
,使得
与
同时成立,求实数
的取值范围;
(3)已知点
为曲线
上的动点,在点
处作曲线
的切线
与曲线
交于另一点
,在点
处作曲线
的切线
,设切线
的斜率分别为
.问:是否存在常数
,使得
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)当
时,求函数
在
上的最大值;
(2)令
,若
在区间
上不单调,求
的取值范围;
(3)当
时,函数
的图象与
轴交于两点
,且
,又
是
的导函数.若正常数
满足条件
.证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com