【题目】在
中,内角A,B,C的对边分别为a,b,c,且
.
(1)若
,
,请判断
的形状;
(2)若
,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的两焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆交于P,Q两点.
(1) 求椭圆C的方程;
(2) 设椭圆的左顶点为A,记直线AP,AQ的斜率分别为k1,k2.①若m=0,求k1k2的值;②若k1k2=-
,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前n项和为
,![]()
(1)求证:数列
是等比数列;
(2)若
,是否存在q的某些取值,使数列
中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由.
(3)若
,是否存在
,使数列
中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以
再加1;如果它是偶数,则将它除以
;如此循环,最终都能够得到
.下图为研究“角谷猜想”的一个程序框图.若输入
的值为
,则输出i的值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,圆
:
,动圆
与圆
和圆
均内切.
(1)求动圆圆心
的轨迹
的方程;
(2)过点
的直线
与轨迹
交于
,
两点,过点
且垂直于
的直线交轨迹
于两点
,
两点,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在
上的偶函数
满足
,且在区间
上是减函数,
,
现有下列结论,其中正确的是:( )
①
的图象关于直线
对称;②
的图象关于点
对称;③
在区间
上是减函数;④
在区间
内有8个零点.
A.①③B.②④C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的左顶点为
,右焦点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于点
、
,直线
、
分别与
轴交于点
、
.
(1)若
,求点
的横坐标;
(2)设直线
、
的斜率分别为
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试研究,一个三角形能否同时具有以下两个性质:(1)三边是连续的三个自然数;(2)最大角是最小角的2倍.若能,请求出这个三角形的三边以及最大角的余弦值;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com