【题目】某班共有
名学生,已知以下信息:
①男生共有
人;
②女团员共有
人;
③住校的女生共有
人;
④不住校的团员共有
人;
⑤住校的男团员共有
人;
⑥男生中非团员且不住校的共有
人;
⑦女生中非团员且不住校的共有
人.
根据以上信息,该班住校生共有______人![]()
科目:高中数学 来源: 题型:
【题目】在一次田径比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。
![]()
若将运动员按成绩由好到差编为1—35号,再用系统抽样方法从中抽取5人,则其中成绩在区间
上的运动员人数为
A.6B.5C.4D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中:
①若
,满足
,则
的最大值为
;
②若
,则函数
的最小值为![]()
③若
,满足
,则
的最小值为![]()
④函数
的最小值为![]()
正确的有__________.(把你认为正确的序号全部写上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点
.
(1)求抛物线C的方程;
(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
右焦点坐标为
,且过点
.
(1)求椭圆
的“伴椭圆”方程;
(2)在椭圆
的“伴椭圆”上取一点
,过该点作椭圆的两条切线
、
,证明:两线垂直;
(3)在双曲线
上找一点
作椭圆
的两条切线,分别交于切点
、
使得
,求满足条件的所有点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形
中,
,
,
,四边形
为矩形,平面
平面
,
.
![]()
(1)求证:
平面
;
(2)点
在线段
上运动,设平面
与平面
所成二面角的平面角为
(
),试求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com