精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线 的焦点为,准线为,三个点 中恰有两个点在上.

(1)求抛物线的标准方程;

(2)过的直线交 两点,点上任意一点,证明:直线 的斜率成等差数列.

【答案】(1) (2)见解析

【解析】试题分析:(1由对称关系可知, 两点在上,求得抛物线的标准方程为;(2)设直线的方程为联立抛物线方程,得到韦达定理表示出直线的斜率证明满足等差中项公式即可。

试题解析:

I因为抛物线 关于x轴对称,

所以中只能是两点在上,

带入坐标易得,所以抛物线的标准方程为

II证明:抛物线的焦点的坐标为,准线的方程为.

设直线的方程为 .

,可得,所以

于是

设直线的斜率分别为

一方面,

.

另一方面, .

所以,即直线的斜率成等差数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据平均数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有线性相关关系.

(Ⅰ)求关于的线性回归方程

(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)

参考数据及公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 的两个顶点的坐标分别为,三个内角满足.

(1)若顶点的轨迹为,求曲线的方程;

(2)若点为曲线上的一点,过点作曲线的切线交圆于不同的两点(其中的右侧),求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点, 且为坐标原点)?若存在,写出该圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程,其中

(I)若随机选自集合随机选自集合,求方程有实根的概率;

)若随机选自区间随机选自区间,求方程有实根的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AF平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形, .

(1)求证: 平面

(2)线段上是否存在一点,使得 ?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案