【题目】已知抛物线
:
的焦点为
,准线为
,三个点
,
,
中恰有两个点在
上.
(1)求抛物线
的标准方程;
(2)过
的直线交
于
,
两点,点
为
上任意一点,证明:直线
,
,
的斜率成等差数列.
科目:高中数学 来源: 题型:
【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.
![]()
(1)求成绩在
的频率;
(2)根据频率分布直方图算出样本数据平均数;
(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在
的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区某种农产品的年产量
(单位:吨)对价格
(单位:千元/吨)和利润
的影响,对近五年该农产品的年产量和价格统计如下表:
| 1 | 2 | 3 | 4 | 5 |
| 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知
和
具有线性相关关系.
(Ⅰ)求
关于
的线性回归方程
;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润
取到最大值?(保留一位小数)
参考数据及公式:
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形
为菱形,对角线
与
的交点为
,四边形
为梯形,
.
![]()
(Ⅰ)若
,求证:
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)若
,
,
,求
与平面
所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
的两个顶点
的坐标分别为
,三个内角
满足
.
(1)若顶点
的轨迹为
,求曲线
的方程;
(2)若点
为曲线
上的一点,过点
作曲线
的切线交圆
于不同的两点
(其中
在
的右侧),求四边形
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆
恒有两个交点
, 且
(
为坐标原点)?若存在,写出该圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于
的一元二次方程
,其中
。
(I)若
随机选自集合
,
随机选自集合
,求方程有实根的概率;
(Ⅱ)若
随机选自区间
,
随机选自区间
,求方程有实根的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AF
平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,
.
(1)求证:
平面
;
(2)线段
上是否存在一点
,使得
?若存在,确定点
的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com