【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)能,
或
.
【解析】
试题分析:(1)设直线
,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线
的斜率,再表示
;
(2)第一步由 (Ⅰ)得
的方程为
.设点
的横坐标为
,直线
与椭圆方程联立求点
的坐标,第二步再整理点
的坐标,如果能构成平行四边形,只需
,如果有
值,并且满足
,
的条件就说明存在,否则不存在.
试题解析:解:(1)设直线
,
,
,
.
∴由
得
,
∴
,
.
∴直线
的斜率
,即
.
即直线
的斜率与
的斜率的乘积为定值
.
(2)四边形
能为平行四边形.
∵直线
过点
,∴
不过原点且与
有两个交点的充要条件是
,![]()
由 (Ⅰ)得
的方程为
.设点
的横坐标为
.
∴由
得
,即![]()
将点
的坐标代入直线
的方程得
,因此
.
四边形
为平行四边形当且仅当线段
与线段
互相平分,即![]()
∴
.解得
,
.
∵
,
,
,
∴当
的斜率为
或
时,四边形
为平行四边形.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)根据中点坐标公式求出
中点
的坐标,根据斜率公式可求得
的斜率,利用点斜式可求
边上的中线所在直线的方程;(2)先根据斜率公式求出
的斜率,从而求出
边上的高所在直线的斜率为
,利用点斜式可求
边上的高所在直线的方程.
试题解析:(1)由B(10,4),C(2,-4),得BC中点D的坐标为(6,0),
所以AD的斜率为k=
=8,
所以BC边上的中线AD所在直线的方程为y-0=8(x-6),
即8x-y-48=0.
(2)由B(10,4),C(2,-4),得BC所在直线的斜率为k=
=1,
所以BC边上的高所在直线的斜率为-1,
所以BC边上的高所在直线的方程为y-8=-(x-7),即x+y-15=0.
【题型】解答题
【结束】
17
【题目】已知直线l:x-2y+2m-2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的五面体ABCDEF中,AB∥CD,AB=2AD=2,∠ADC=∠BCD=120°,四边形EDCF是正方形,二面角E﹣DC﹣A的大小为90°.
![]()
(1)求证:直线AD⊥平面BDE
(2)求点D到平面ABE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商家对他所经销的一种商品的日销售量(单位:吨)进行统计,最近50天的统计结果
如下表:
日销售量 | 1 | 1.5 | 2 |
天数 | 10 | 25 | 15 |
频率 | 0.2 |
|
|
若以上表中频率作为概率,且每天的销售量相互独立.
(1)求5天中该种商品恰好有两天的销售量为1.5吨的概率;
(2)已知每吨该商品的销售利润为2千元,表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的序号是( )
①“b=2”是“1,b,4成等比数列”的充要条件;
②“双曲线
与椭圆
有共同焦点”是真命题;
③若命题p∨¬q为假命题,则q为真命题;
④命题p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】F是双曲线
1(a>0,b>0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3
,则此双曲线的离心率为( )
A.2B.3C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知抛物线y2=8
x的焦点为F,直线l过点F且依次交抛物线及圆
2于A,B,C,D四点,则|AB|+4|CD|的最小值为_____.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程
的曲线是圆
.
(1)求实数
的取值范围;
(2)若直线
与圆
相交于
、
两点,且
(
为坐标原点),求实数
的值;
(3)当
时,设
为直线
上的动点,过
作圆
的两条切线
、
,切点分别为
、
,求四边形
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com