【题目】下列说法中,正确的序号是( )
①“b=2”是“1,b,4成等比数列”的充要条件;
②“双曲线
与椭圆
有共同焦点”是真命题;
③若命题p∨¬q为假命题,则q为真命题;
④命题p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
【答案】B
【解析】
利用充要条件以及等比数列的性质判断①的正误;双曲线与椭圆的焦点坐标判断②的正误;复合命题的真假判断③的正误;命题的否定形式判断④的正误.
解:①“b=2”可知“1,b,4成等比数列”,反之“1,b,4成等比数列”,则b=2或b=-2,所以“b=2”是“1,b,4成等比数列”的充分不必要条件;所以①不正确;
②“双曲线
的焦点坐标(±2,0);椭圆
的焦点坐标(±2,0),所以椭圆与双曲线有共同焦点”是真命题;所以②正确;
③若命题p∨¬q为假命题,p与¬q都是假命题,所以q为真命题;所以③正确;
④命题p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0,满足命题的否定形式,所以④正确;
故选:B.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的两个焦点分别为F1,F2,离心率为
,过F1的直线l与椭圆C交于M,N两点,且△MNF2的周长为8.
(1)求椭圆C的方程;
(2)若直线y=kx+b与椭圆C分别交于A,B两点,且OA⊥OB,试问点O到直线AB的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为2的菱形,
,
,平面
平面
,点
为棱
的中点.
![]()
(Ⅰ)在棱
上是否存在一点
,使得
平面
,并说明理由;
(Ⅱ)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,直线
:
.
(Ⅰ)设
是
图象上一点,
为原点,直线
的斜率
,若
在
上存在极值,求
的取值范围;
(Ⅱ)是否存在实数
,使得直线
是曲线
的切线?若存在,求出
的值;若不存在,说明理由;
(Ⅲ)试确定曲线
与直线
的交点个数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足:a1=3,当n≥2时,an﹣1+an=4n;对于任意的正整数n,
.设{bn}的前n项和为Sn.
(1)求数列{an}及{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为1的正方形,PB⊥BC,PD⊥DC,且PC
.
![]()
(1)求证:PA⊥平面ABCD;
(2)求异面直线AC与PD所成角的余弦值;
(3)求二面角B﹣PD﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com