【题目】函数
的最小值为
.
(1)求
;
(2)若
,求
及此时
的最大值.
【答案】(1)
;(2)答案见解析.
【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:①
小于﹣1时②
大于﹣1而小于1时③
大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把
代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
试题解析:
(1)由![]()
.这里![]()
①若
则当
时, ![]()
②若
当
时, ![]()
③若
则当
时, ![]()
因此![]()
(2)![]()
①若
,则有
得
,矛盾;
②若
,则有
即
或
(舍).
时,
此时![]()
当
时,
取得最大值为5.
点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.
【题型】填空题
【结束】
21
【题目】已知两个不共线的向量
的夹角为
,且
为正实数.
(1)若
与
垂直,求
;
(2)若
,求
的最小值及对应的
的值,并指出此时向量
与
的位置关系.
(3)若
为锐角,对于正实数
,关于
的方程
有两个不同的正实数解,且
,求
的取值范围.
【答案】(1)
;(2)答案见解析;(3)
.
【解析】试题分析:(1)利用
+2
与
﹣4
垂直,(
+2
)(
﹣4
)=0,可得,化简,即可求出tanθ;
(2)利用二次函数的性质,可求|x
﹣
|的最小值及对应的x的值,利用数量积公式,可确定向量
与x
﹣
的位置关系;
(3)方程|x
﹣
|=|m
|,等价于9x2﹣3cosθx+1﹣9m2=0,利用关于x的方程|x
﹣
|=|m
|有两个不同的正实数解,建立不等式,即可确定结论.
试题解析:
(1)由题意,得
即![]()
故
又
,故![]()
因此, ![]()
(2)![]()
故当
时,
取得最小值为
此时, ![]()
故向量
与
垂直.
(3)对方程
两边平方,得
①
设方程①的两个不同正实数解为
,则由题意,得
,
解之,得![]()
若
则方程①可以化为
,
则
即
由题知
故![]()
令
,得
,故
,且
.
当
,且
时,
的取值范围为
,且
};
当
,或
时,
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC=a,AC=b,且a,b是方程
的两根,2cos(A+B)=1.
(1)求∠C的度数;
(2)求AB的长;
(3)求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三棱柱ABC﹣A1B1C1中,点D是BC的中点.![]()
(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E:
(a>b>0)过点(
,1),且与直线
x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
AD与BC交于点M,设
,以
、
为基底表示![]()
![]()
【答案】![]()
【解析】试题分析:由A、M、D三点共线,知
;由C、M、B三点共线,知![]()
,所以
,所以
=
.
试题解析:
设
,
则![]()
因为A、M、D三点共线,所以
,即![]()
又![]()
因为C、M、B三点共线,所以
,即![]()
由
解得
,所以![]()
【题型】解答题
【结束】
20
【题目】函数
的最小值为
.
(1)求
;
(2)若
,求
及此时
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】化简
(1)![]()
(2)![]()
【答案】(1)
;(2)
.
【解析】试题分析:(1)切化弦可得三角函数式的值为-1
(2)结合三角函数的性质可得三角函数式的值为![]()
试题解析:
(1)tan70°cos10°(
tan20°﹣1)
=cot20°cos10°(
﹣1)
=cot20°cos10°(
)
=
×cos10°×(
)
=
×cos10°×(
)
=
×(﹣
)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故
=![]()
点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.
【题型】解答题
【结束】
18
【题目】平面内给定三个向量![]()
(1)求![]()
(2)求满足
的实数
.
(3)若
,求实数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{
}的前n项和为Sn , 则S1S2S3…S10= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为( ) ![]()
A.200π
B.50π
C.100π
D.
π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是( )
A.(﹣∞,0)
B.![]()
C.![]()
D.(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com