精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为(
A.200π
B.50π
C.100π
D. π

【答案】B
【解析】解:由三视图复原几何体,几何体是底面是直角三角形, 一条侧棱垂直底面直角顶点的三棱锥;扩展为长方体,也外接与球,
它的对角线的长为球的直径: =5
该三棱锥的外接球的表面积为: =50π,
故选B.
【考点精析】通过灵活运用简单空间图形的三视图和球内接多面体,掌握画三视图的原则:长对齐、高对齐、宽相等;球的内接正方体的对角线等于球直径;长方体的外接球的直径是长方体的体对角线长即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)过点( ,1),且与直线 x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的最小值为.

1)求

2)若,求及此时的最大值.

【答案】(1) (2)答案见解析.

【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:小于﹣1时大于﹣1而小于1时大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

试题解析:

(1)由

.这里

①若则当时,

②若时,

③若则当时,

因此

(2)

①若,则有,矛盾;

②若,则有(舍).

时, 此时

时, 取得最大值为5.

点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.

型】填空
束】
21

【题目】已知两个不共线的向量的夹角为,且为正实数.

1)若垂直,求

2)若,求的最小值及对应的的值,并指出此时向量的位置关系.

3)若为锐角,对于正实数,关于的方程有两个不同的正实数解,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC中角A,B,C的对边,函数 且f(A)=5.
(1)求角A的大小;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线 .

(1)求证:对,直线与圆总有两个不同的交点

(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为向量

,且.

1)求锐角B的大小;

2)在(1)的条件下,如果b=2,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1判断函数是否有零点;

2设函数上是减函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案