精英家教网 > 高中数学 > 题目详情

【题目】在三棱柱中,侧面为菱形,且,点EF分别为的中点.求证:

1)平面平面

2平面.

【答案】1)证明见解析;(2)证明见解析.

【解析】

1)利用菱形及等腰三角形的性质证明,推出平面即可证明面面垂直;(2)利用中位线的性质证明四边形是平行四边形即可推出,从而证明线面平行.

证明:(1)连结O点,连结.

因为侧面为菱形,所以对角线,且O的中点,

中,因为,所以

因为平面,所以平面

因为平面,所以平面平面.

2)连结,因为侧面为菱形,所以对角线互相平分,点O的中点.

因为点F的中点,所以在中,

在三棱柱中,侧棱,且,又点E的中点,

所以,.

所以,四边形是平行四边形,

所以.

因为平面平面,所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exx2ax2+axaR.

1)当a1时,求fx)的极值;

2)若fx)恰有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Snn2+pn,且a4a7a12成等比数列.

1)求数列{an}的通项公式;

2)若bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办的体育节设有投篮项目.该项目规定:每位同学仅有三次投篮机会,其中前两次投篮每投中一次得1分,第三次投篮投中得2分,若不中不得分,投完三次后累计总分.

1)若甲同学每次投篮命中的概率为,且相互不影响,记甲同学投完三次后的总分为X,求随机变量X的概率分布列;

2)若(1)中的甲同学邀请乙同学一起参加投篮项目,已知乙同学每次投篮命中的概率为,且相互不影响,甲、乙两人之间互不干扰.求甲同学的总分低于乙同学的总分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正边形等分成个等腰三角形(如图所示),当变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin3°的近似值为( (取近似值3.14)

A.0.012B.0.052

C.0.125D.0.235

查看答案和解析>>

同步练习册答案