精英家教网 > 高中数学 > 题目详情

【题目】运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆y轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于(

A.B.C.D.

【答案】B

【解析】

构造一个底面半径为3,高为4的圆柱,通过计算可得高相等时截面面积相等,根据祖暅原理可得橄榄球形几何体的体积的一半等于圆柱的体积减去圆锥体积.

解:构造一个底面半径为3,高为4的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,

则当截面与顶点距离为时,小圆锥的底面半径为,则

故截面面积为

代入椭圆可得

橄榄球形几何体的截面面积为

由祖暅原理可得橄榄球形几何体的体积

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.

(Ⅰ)求袋中原有白球的个数:

(Ⅱ)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在传染病学中,通常把从致病刺激物侵人机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期. 一研究团队统计了某地区1000名患者的相关信息,得到如下表格:

潜伏期(单位:天)

人数

1)求这1000名患者的潜伏期的样本平均数x (同一组中的数据用该组区间的中点值作代表)

2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;

潜伏期

潜伏期

总计

岁以上(含岁)

岁以下

总计

3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立,为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为菱形,且,点EF分别为的中点.求证:

1)平面平面

2平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合STSN*TN*ST中至少有两个元素,且ST满足:

①对于任意xyS,若xy,都有xyT

②对于任意xyT,若x<y,则S

下列命题正确的是(

A.S4个元素,则ST7个元素

B.S4个元素,则ST6个元素

C.S3个元素,则ST5个元素

D.S3个元素,则ST4个元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),直线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线C的极坐标方程;

2)若直线与直线l相交于点A,与曲线C相交于不同的两点MN.的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的浓度(单位:),得下表:

1)估计事件该市一天空气中浓度不超过,且浓度不超过的概率;

2)根据所给数据,完成下面的列联表:

3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图如图所示,在这个正方体中,点是棱的中点,分别是线段(不包含端点)上的动点,则下列说法正确的是( )

A.在点的运动过程中,存在

B.在点的运动过程中,存在

C.三棱锥的体积为定值

D.三棱锥的体积不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某口罩厂一年中各月份的收入、支出情况如图所示(单位:万元,下列说法中错误的是(注:月结余=月收入一月支出)( )

A.上半年的平均月收入为45万元B.月收入的方差大于月支出的方差

C.月收入的中位数为70D.月结余的众数为30

查看答案和解析>>

同步练习册答案