精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0),F为抛物线的焦点,点M(
p2
,p
);
(1)设过F且斜率为1的直线L交抛物线C于A、B两点,且|AB|=8,求抛物线的方程;
(2)过点M作斜率互为相反数的两条直线,分别交抛物线C于除M之外的D、E两点.求证:直线DE的斜率为定值.
分析:(1)根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去y,根据韦达定理,结合抛物线的定义,即可求抛物线的方程;
(2)设出直线方程代入抛物线方程,求出D,E的坐标,即可证得结论.
解答:(1)解:抛物线焦点为(
p
2
,0),且斜率为1,则直线方程为y=x-
p
2

代入抛物线方程y2=2px得x2-3px+
p2
4
=0,
设A(x1,y1),B(x2,y2),则x1+x2=3p
根据抛物线的定义可知|AB|=x1+
p
2
+x2+
p
2
=x1+x2+p=4p=8,∴p=2
∴抛物线的方程为y2=4x;
(2)证明:由(1)知M(1,2),设MD:x=my+1-2m,则ME:x=-my+1+2m
MD:x=my+1-2m,代入y2=4x,可得y2-4my-4+8m=0,∴y=2或y=4m-2,∴D(4m2-4m+1,4m-2)
同理E(4m2+4m+1,-4m-2)
∴直线DE的斜率为
4m-2+4m+2
4m2-4m+1-(4m2+4m+1)
=-1
点评:本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案