精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正四棱锥可绕着任意旋转,平面.,则正四棱锥在面内的投影面积的取值范围是_______.

【答案】

【解析】

由题意可得正四棱锥的侧面与底面所成角为,侧面上的高为,设正四棱锥的底面与平面所成角为,时投影为矩形,当角度为,投影面积最大;,投影为一个矩形和一个三角形;,投影面积开始逐渐变大.

如图正四棱锥,,

设底面中心为,中点,连接

, ,可得:

,

是侧面与底面的二面角.

,.

侧面与底面的二面角为.

设正四棱锥的底面与平面所成角为

①当时投影为矩形

投影面积的

②当,投影为一个矩形和一个三角形

(,)

③当时投影面积开始逐渐变大直到侧面落到平面上,此时面积为

综上所述:

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的两个焦点,设分别是椭圆的上、下顶点,且四边形的面积为,其内切圆周长为.

(1)求椭圆的方程;

(2)当时,为椭圆上的动点,且,试问:直线是否恒过一定点?若是,求出此定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与轴平行,求

(2)当时,函数的图象恒在轴上方,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,我国经济持续高速增长如图给出了我国2003年至2012年第二产业增加值与第一产业增加值的差值以下简称为:产业差值的折线图,记产业差值为单位:万亿元

求出y关于年份代码t的线性回归方程;

利用中的回归方程,分析2003年至2012年我国产业差值的变化情况,并预测我国产业差值在哪一年约为34万亿元;

结合折线图,试求出除去2007年产业差值后剩余的9年产业差值的平均值及方差结果精确到

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

样本方差公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为抛物线上异于原点的任意一点过点的直线交抛物线于另一点轴的正半轴于点且有.当点的横坐标为3为正三角形.

(1)求抛物线的方程

(2)若直线和抛物线有且只有一个公共点试问直线是否过定点若过定点求出定点坐标若不过定点请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆,抛物线,过上一点异于原点的切线lAB两点,切线lx轴于点Q

若点P的横坐标为1,且,求p的值.

的面积的最大值,并求证当面积取最大值时,对任意的,直线l均与一个定椭圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某老小区建成时间较早,没有集中供暖,随着人们生活水平的日益提高热力公司决定在此小区加装暖气该小区的物业公司统计了近五年(截止2018年年底)小区居民有意向加装暖气的户数,得到如下数据

年份编号x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加装户数y

34

95

124

181

216

)若有意向加装暖气的户数y与年份编号x满足线性相关关系求yx的线性回归方程并预测截至2019年年底,该小区有多少户居民有意向加装暖气;

2018年年底郑州市民生工程决定对老旧小区加装暖气进行补贴,该小区分到120个名额物业公司决定在2019年度采用网络竞拍的方式分配名额,竞拍方案如下:①截至2018年年底已登记在册的居民拥有竞拍资格;②每户至多申请一个名额,由户主在竞拍网站上提出申请并给出每平方米的心理期望报价;③根据物价部门的规定,每平方米的初装价格不得超过300元;④申请阶段截止后,将所有申请居民的报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则认为申请时问在前的居民得到名额,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的50位居民进行调查统计了他们的拟报竞价,得到如图所示的频率分布直方图:

1)求所抽取的居民中拟报竞价不低于成本价180元的人数;

2)如果所有符合条件的居民均参与竞拍,请你利用样本估计总体的思想预测至少需要报价多少元才能获得名额(结果取整数)

参考公式对于一组数据(x1y1),(x2y2),(x3y3),xnyn),其回归直线的斜率和截距的最小二乘估计分别为,

查看答案和解析>>

同步练习册答案