【题目】已知椭圆
:
的左、右焦点分别为
,过
任作一条与两条坐标轴都不垂直的直线,与椭圆
交于
两点,且
的周长为8,当直线
的斜率为
时,
与
轴垂直.
(Ⅰ)求椭圆
的方程;
(Ⅱ)在
轴上是否存在定点
,总能使
平分
?说明理由.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程及
的直角坐标方程;
(2)若曲线
与曲线
分别交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数,
为直线
的倾斜角),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出曲线
的直角坐标方程,并求
时直线
的普通方程;
(2)直线
和曲线
交于两点
,点
的直角坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.卷八中第33问:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )
![]()
A.28B.56C.84D.120
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
(
)的左右两个焦点分别是
、
,
在椭圆
上运动.
(1)若对
有最大值为120°,求出
、
的关系式;
(2)若点
是在椭圆上位于第一象限的点,过点
作直线
的垂线
,过
作直线
的垂线
,若直线
、
的交点
在椭圆
上,求点
的坐标;
(3)若设
,在(2)成立的条件下,试求出
、
两点间距离的函数
,并求出
的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com