设抛物线
的焦点为
,准线为
,
,以
为圆心的圆
与
相切于点
,
的纵坐标为
,
是圆
与
轴除
外的另一个交点.
(I)求抛物线
与圆
的方程;
( II)已知直线
,
与
交于
两点,
与
交于点
,且
, 求
的面积.
(I)抛物线为:
,圆的方程为:
; ( II)
.
解析试题分析:(I)根据抛物线的方程与准线,可得
,由
的纵坐标为
,
的纵坐标为
,即
,
,由题意可知:
,则在等腰三角形中有
或
,由于
不重合,则
.则抛物线与圆的方程就得出.
(II)根据题意可得三角形
是直角三角形,又因
,则
是
的中点,即
解得
.
联立直线与抛物线方程得
则由弦长公式得
,又根据点到直线的距离得出
到
的距离
,从而得出
.
试题解析:(I)根据抛物线的定义:有
由
的纵坐标为
,
的纵坐标为![]()
,
,则
,又由
得![]()
则抛物线为:
,圆的方程为:![]()
( II)由
,
根据题意可得三角形
是直角三角形,又因
,则
是
的中点,即
解得
.
由
,根据点到直线的距离得出
到
的距离
,从而得出
.
考点:1.抛物线的定义与抛物线与直线之间的关系;2.对弦长公式与点到直线距离的考查.
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的左、右焦点和短轴的两个端点构成边长为2的正方形.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相交于
,
两点.点
,记直线
的斜率分别为
,当
最大时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)的右焦点
,右顶点
,右准线
且
.![]()
(1)求椭圆
的标准方程;
(2)动直线
:
与椭圆
有且只有一个交点
,且与右准线相交于点
,试探究在平面直角坐标系内是否存在点
,使得以
为直径的圆恒过定点
?若存在,求出点
坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
抛物线
的焦点均在
轴上,
的中心和
的顶点均为坐标原点
从每条曲线上取两个点,将其坐标记录于下表中:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在
轴上,且过点
.![]()
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆
相切的直线
交抛物线于不同的两点
若抛物线上一点
满足![]()
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图已知椭圆的中点在原点,焦点在x轴上,长轴是短轴的2倍且过点
,平行于
的直线
在y轴的截距为
,且交椭圆与
两点,![]()
(1)求椭圆的方程;(2)求
的取值范围;(3)求证:直线
、
与x轴围成一个等腰三角形,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,
)在椭圆C上.![]()
(I)求椭圆C的方程;
(II)如图,动直线
:
与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且
,
,四边形
面积S的求最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
方程为
,过右焦点斜率为1的直线到原点的距离为
.![]()
(1)求椭圆方程.
(2)已知
为椭圆的左右两个顶点,
为椭圆在第一象限内的一点,
为过点
且垂直
轴的直线,点
为直线
与直线
的交点,点
为以
为直径的圆与直线
的一个交点,求证:
三点共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com