【题目】已知两点A(-2,0),B(0,1),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是 .
科目:高中数学 来源: 题型:
【题目】如图所示的多面体中,
菱形,
是矩形,
⊥平面
,
,
.![]()
(Ⅰ)异面直线
与
所成的角余弦值;
(Ⅱ)求证平面
⊥平面
;
(Ⅲ)在线段
取一点
,当二面角
的大小为60°时,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化工厂拟建一个下部为圆柱,上部为半球的容器(如图圆柱高为
,半径为
,不计厚度,单位:米),按计划容积为
立方米,且
,假设建造费用仅与表面积有关(圆柱底部不计 ),已知圆柱部分每平方米的费用为2千元,半球部分每平方米的费用为2千元,设该容器的建造费用为y千元.![]()
(1)求y关于r的函数关系,并求其定义域;
(2)求建造费用最小时的
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的圆心为
的圆心为N,一动圆与圆M内切,与圆N外切.
(1)求动圆圆心P的轨方迹方程;
(2)设A,B分别为曲线P与x轴的左右两个交点,过点
的直线
与曲线P交于C,D两点,若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若
的部分图象如图所示.
(1)求函数
的解析式;
(2)将
的图象向左平移
个单位长度得到
的图象,若
图象的一个对称轴为
,求
的最小值;
(3)在第(2)问的前提下,求函数
在
上的单调区间.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若
,则
;
②已知
,
,且
与
的夹角为锐角,则实数
的取值范围是
;
③已知
是平面上一定点,
是平面上不共线的三个点,动点
满足
,
,则
的轨迹一定通过
的重心;
④在
中,
,边长
分别为
,则
只有一解;
⑤如果△ABC内接于半径为
的圆,且![]()
则△ABC的面积的最大值
;
其中正确的序号为_______________________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在著名的汉诺塔问题中有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上:①每次只能移动一个金属片;②在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n),则f(6)=( ) ![]()
A.31
B.33
C.63
D.65
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=
cosωx+1,2sinωx,b=
cosωx-
,cosωx), ω>0.
(Ⅰ)当ωx≠kπ+
,k∈Z时,若向量c=(1,0),d=(
,0),且(a-c)∥(b+d),求4sin2ωx-cos2ωx的值;
(Ⅱ)若函数f(x)=a·b的图象的相邻两对称轴之间的距离为
,当x∈[
],g时,求函数f(x)的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com