【题目】如图所示的多面体中,
菱形,
是矩形,
⊥平面
,
,
.![]()
(Ⅰ)异面直线
与
所成的角余弦值;
(Ⅱ)求证平面
⊥平面
;
(Ⅲ)在线段
取一点
,当二面角
的大小为60°时,求
.
【答案】解:(Ⅰ)因为
,所以
就是异面直线
与
所成的角,连接
,
在
中,
,于是
,所以异面直线
与
所成的角余弦值为
.
(Ⅱ)取
的中点
.由于
面
,
,
∴
,又
是菱形,
是矩形,所以,
是全等三角形,
,所以
,
就是二面角
的平面角经计算
,所以
,即
.
所以平面
平面
.
(Ⅲ)建立如图的直角坐标系,由
,则
![]()
.
平面
的法向量
.
设
,则 ![]()
设平面
的法向量
,则
得
,令
,则
,得
.
因为二面角
的大小为60°,
所以
,
整理得
,解得 ![]()
所以
.
【解析】(1)由已知A B / / D C可知 ∠ B A E 就是异面直线 A E 与 D C 所成的角,因此能求出异面直线 A E 与 D C 所成的角,根据题中的已知条件利用余弦定理求出即可。(2)由已知作出辅助线,可推导出∠ A M C 就是二面角 A E F C 的平面角,借助已知的边的关系由勾股定理可得证A M ⊥ M C ,再根据面面垂直的判定定理即可得证。(3)根据题意建立空间直角坐标系,求出各个点的坐标进而求出各个向量的坐标,设出平面CEF和平面NEF的法向量,由向量垂直的坐标运算公式可求出法向量,再利用向量的数量积运算公式结合二面角 N E F C 的大小为60°得到关于λ的方程求出其值结合两点间的距离公式即可求出结果。
【考点精析】关于本题考查的点到直线的距离公式和平面与平面垂直的判定,需要了解点
到直线
的距离为:
;一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知曲线
的参数方程
(
为参数),曲线
的极坐标方程为
.
(1)将曲线
的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(2)试问曲线
,
是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量
的取值为不大于
的非负整数值,它的分布列为:
| 0 | 1 | 2 |
| n |
|
|
|
|
|
|
其中
(
)满足:
,且
.
定义由
生成的函数
,令
.
(I)若由
生成的函数
,求
的值;
(II)求证:随机变量
的数学期望
,
的方差
;
(
)
(Ⅲ)现投掷一枚骰子两次,随机变量
表示两次掷出的点数之和,此时由
生成的函数记为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是两个平面,
是两条直线,有下列四个命题:
⑴如果
,那么
.
⑵如果
,那么
.
⑶如果
,那么
.
其中正确命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2:
(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)极坐标系中两点A(ρ1 , θ0),B(ρ2 , θ0+
)都在曲线C1上,求
+
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x),当x≥0时,f(x)=
,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A.3a﹣1
B.1﹣3a
C.3﹣a﹣1
D.1﹣3﹣a
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准
(吨),一位居民的月用水量不超过
的部分按平价收费,超出
的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年100位居民毎人的月均用水量(单位:吨),将数据按照
分成
组,制成了如图所示的频率分布直方图.![]()
(1)求直方图中a的值;
(2)若该市有110万居民,估计全市居民中月均用水量不低于
吨的人数,并说明理由;
(3)若该市政府希望使80%的居民每月的用水量不超过标准
(吨),估计x的值(精确到0.01),并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com