已知函数
:
(1)若函数在区间
上存在零点,求实数
的取值范围;
(2)问:是否存在常数
,当
时,
的值域为区间
,且
的长度为
.
(1)
;(2)存在,见解析.
解析试题分析:(1) 先由函数对称轴为
得函数在
上单调减,要使函数在
存在零点,则需满足
,解得
; (2)当
时,
的值域为
,由
,得
合题意;当
时,
的值域为
,由
,得不合题意;当
时,
的值域为
,用上面的方法得
或
合题意.
试题解析:⑴ ∵二次函数
的对称轴是![]()
∴函数
在区间
上单调递减
∴要函数
在区间
上存在零点须满足
即
解得
,所以
.
⑵ 当
时,即
时,
的值域为:
,即
∴![]()
∴
∴
经检验
不合题意,舍去。
当
时,即
时,
的值域为:
,即 ![]()
∴
, ∴![]()
经检验
不合题意,舍去。
当![]()
时,
的值域为:
,即 ![]()
∴![]()
∴
∴
或![]()
经检验
或
或
满足题意。
所以存在常数
,当
时,
的值域为区间
,且
的长度为
.
考点:零点存在性定理、二次函数的单调性、二次函数值域、分类讨论思想.
科目:高中数学 来源: 题型:解答题
设函数
,
是定义域为
的奇函数.
(Ⅰ)求
的值,判断并证明当
时,函数
在
上的单调性;
(Ⅱ)已知
,函数
,求
的值域;
(Ⅲ)已知
,若
对于
时恒成立.请求出最大的整数
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为
(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为
平方米,且高度不低于
米.记防洪堤横断面的腰长为
(米),外周长(梯形的上底线段
与两腰长的和)为
(米).![]()
⑴求
关于
的函数关系式,并指出其定义域;
⑵要使防洪堤横断面的外周长不超过
米,则其腰长
应在什么范围内?
⑶当防洪堤的腰长
为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若
的定义域为
,值域为
,则称函数
是
上的“四维方军”函数.
(1)设
是
上的“四维方军”函数,求常数
的值;
(2)问是否存在常数
使函数
是区间
上的“四维方军”函数?若存在,求出
的值,否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com