【题目】已知椭圆
:
(
)的左、右焦点分别为
,
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切,点
在椭圆
上,
,
,
(1)求椭圆
的方程;
(2)若直线
:
与椭圆交于
,
两点,点
,若
,求斜率
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,
是边长为2的正方形,平面
平面
,且
,
是线段
的中点,过
作直线
,
是直线
上一动点.
![]()
(1)求证:
;
(2)若直线
上存在唯一一点
使得直线
与平面
垂直,求此时二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 |
|
|
|
|
| 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在
且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在
使用自由购的顾客中,随机抽取3人进一步了解情况,用
表示这3人中年龄在
的人数,求随机变量
的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
恒过点
,且与直线
相切.
(1)求圆心
的轨迹
的方程;
(2)设
是轨迹
上横坐标为2的点,
的平行线
交轨迹
于
,
两点,交轨迹
在
处的切线于点
,问:是否存在实常数
使
,若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在
上的偶函数
满足
,且
,当
时,
.已知方程
在区间
上所有的实数根之和为
.将函数
的图象向右平移
个单位长度,得到函数
的图象,则
__________,
__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:
![]()
(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;
(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;
(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为
,求
的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2y,过点(0,2)作直线l交抛物线于A、B两点.
(1)证明:OA⊥OB;
(2)若直线l的斜率为1,过点A、B分别作抛物线的切线l1,l2,若直线l1,l2,相交于点P,直线l1,l2交x轴分别于点M,N,求△MNP的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
有下述四个结论:
①函数
的图象把圆
的面积两等分
②
是周期为
的函数
③函数
在区间
上有3个零点
④函数
在区间
上单调递减
其中所有正确结论的编号是( )
A.①③④B.②④C.①④D.①③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com