【题目】已知三棱柱ABC﹣A1B1C1的直观图和三视图如图所示,E是棱CC1上一点. ![]()
(1)若CE=2EC1 , 求三棱锥E﹣ACB1的体积.
(2)若E是CC1的中点,求C到平面AEB1的距离.
【答案】
(1)解:由三视图得该三棱柱是侧棱长为2的直三棱柱,
底面ABC是以AB为斜边的等直角三角形,且AB=2,
∴AC⊥平面BB1C1C,BC⊥平面AA1C1C,
∵CE=2EC1,CC1=2,∴CE=
,
又AC=
,
∴三棱锥E﹣ACB1的体积:
=
= ![]()
(2)解:∵E是CC1的中点,CE=1,
∴AE=B1E=
,即△AEB1是等腰三角形,
∵AB1=2
,∴△AEB1的高为
=1,
设C到平面AEB1的距离为d,
∵
=
,
∴
=
,
解得d=
.
∴C到平面AEB1的距离为
.
![]()
【解析】(1)由三视图得该三棱柱是侧棱长为2的直三棱柱,底面ABC是以AB为斜边的等直角三角形,且AB=2,三棱锥E﹣ACB1的体积
,由此能求出结果.(2)设C到平面AEB1的距离为d,由
=
,能求出C到平面AEB1的距离.
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线
的极坐标方程为
.
(1)把曲线
的方程化为普通方程,
的方程化为直角坐标方程;
(2)若曲线
,
相交于
两点,
的中点为
,过点
做曲线
的垂线交曲线
于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极大值点( ) ![]()
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的焦距为2,离心率为
,
轴上一点
的坐标为
.
![]()
(Ⅰ)求该椭圆的方程;
(Ⅱ)若对于直线
,椭圆
上总存在不同的两点
与
关于直线
对称,且
,求
实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了估计某人的射击技术情况,在他的训练记录中抽取50次检验,他的命中环数如下:10,5,5,8,7,8,6,9,7,8,6,6,5,6,7,8,10,9,7,9,8,7,6,5,9,9,8,8,5,8,6,7,6,9,6,8,8,8,6,7,6,8,107,10,8,7,7,9,5
(1)列出频率分布表
(2)画出频率分布的直方图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(2x+
)(x∈R)的图象过点P(
,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(
+
)=
,﹣
<a<0,求cos(a﹣
)的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com