【题目】(1)试比较
与
的大小.
(2)若函数
的两个零点分别为
,
,
①求
的取值范围;
②证明:
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有三个点在椭圆
上,左、右焦点分别为
、
.
(1)求椭圆
的方程;
(2)过左焦点
且不与坐标轴平行的直线
交椭圆于
、
两点,若线段
的垂直平分线交
轴于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且对一切正整数
都有
.
(1)求证:
;
(2)求数列
的通项公式;
(3)是否存在实数
,使不等式
,对一切正整数
都成立?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个正四面体和一个正四棱锥,它们的各条棱长均相等,则下列说法:
①它们的高相等;②它们的内切球半径相等;③它们的侧棱与底面所成的线面角的大小相等;④若正四面体的体积为
,正四棱锥的体积为
,则
;⑤它们能拼成一个斜三棱柱.其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
和圆
,
、
为椭圆
的左、右焦点,点
在椭圆
上,当直线
与圆
相切时,
.
(I)求
的方程;
(Ⅱ)直线
与椭圆
和圆
都相切,切点分别为
、
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)当
时,判断直线
与曲线
的位置关系;
(2)若直线
与曲线
相交所得的弦长为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数),以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的直角坐标方程及曲线
上的动点
到坐标原点
的距离
的最大值;
(Ⅱ)若曲线
与曲线
相交于
,
两点,且与
轴相交于点
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com