½â£º£¨¢ñ£©ÓÉÌâÉèÖª

£¬ÒòΪa
2=b
2+c
2a
2=4£¬c
2=1£¬¡àÍÖÔ²CµÄ·½³Ì

£¨3·Ö£©
£¨¢ò£©Ò×ÖªÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÉèÖ±Ïßl·½³Ìy=k£¨x-1£©£¬ÇÒlÓëyÖá½»ÓÚM£¨0£¬-k£©£¬ÉèÖ±Ïßl½»ÍÖÔ²ÓÚA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©
ÓÉ

µÃ£¨3+4k
2£©x
2-8k
2x+4k
2-12=0£¬
¡à

£¨6·Ö£©
ÓÖÓÉ

£¬
¡à£¨x
1£¬y
1£©=¦Ë£¨1-x
1£¬-y
1£©£¬
¡à

£¬Í¬Àí¡à

£¨8·Ö£©
¡à

ËùÒÔµ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬¦Ë+¦ÌµÄֵΪ¶¨Öµ

£»£¨10·Ö£©
£¨¢ó£©µ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬Ö±Ïßl¡ÍXÖᣬÔòABEDΪ¾ØÐΣ¬ÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKµÄÖеã

²ÂÏ룬µ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µã

£¨11·Ö£©
Ö¤Ã÷£ºÓÉ£¨¢ò£©ÖªA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬¡àD£¨4£¬y
1£©£¬E£¨4£¬y
2£©
µ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬Ê×ÏÈÖ¤Ö±ÏßAE¹ý¶¨µã

¡ß

µ±

ʱ£¬

=

=

¡àµã

ÔÚÖ±Ïßl
AEÉÏ£¬Í¬Àí¿ÉÖ¤£¬µã

Ò²ÔÚÖ±Ïßl
BDÉÏ£»¡àµ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µã

·ÖÎö£º£¨¢ñ£©ÓÉÌâÉèÖª

£¬ÒòΪa
2=b
2+c
2a
2=4£¬c
2=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÉèÖ±Ïßl·½³Ìy=k£¨x-1£©£¬ÇÒlÓëyÖá½»ÓÚM£¨0£¬-1£©£¬ÉèÖ±Ïßl½»ÍÖÔ²ÓÚA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÓÉ

µÃ£¨3+4k
2£©x
2-8k
2x+4k
2-12=0£¬ÔÙÓÉΤ´ï¶¨Àí½áºÏÌâÉèÌõ¼þÄܹ»ÍƵ¼³öµ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬¦Ë+¦ÌµÄֵΪ¶¨Öµ

£®
£¨¢ó£©µ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬Ö±Ïßl¡ÍXÖᣬÔòABEDΪ¾ØÐΣ¬ÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKµÄÖеã

²ÂÏ룬µ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µã

£®
Ö¤Ã÷£ºÓÉA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÖªD£¨4£¬y
1£©£¬E£¨4£¬y
2£©£®µ±Ö±ÏßlµÄÇãб½Ç±ä»¯Ê±£¬Ê×ÏÈÖ¤Ö±ÏßAE¹ý¶¨µã

ÔÙÖ¤µã

Ò²ÔÚÖ±Ïßl
BDÉÏ£»ËùÒÔµ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µã

£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹ØÖªÊ¶£¬½âÌâʱҪÁé»îÔËÓÃÔ²×¶ÇúÏßÐÔÖÊ£¬×¢ÒâºÏÀíµØ½øÐеȼÛת»¯£®