【题目】在四棱锥
中,
平面
,
是正三角形,
,
.
![]()
(1)求平面
与平面
所成的锐二面角的大小;
(2)点
为线段
上的一动点,设异面直线
与直线
所成角的大小为
,当
时,试确定点
的位置.
【答案】(1)
(2)
的位置可以是
,也可以是
.
【解析】
(1)以
所在直线为
轴,
所在直线为
轴,
所在直线为
轴建立空间直角坐标系
,利用空间向量法求出二面角;
(2)由点
为线段
上的一动点,可设
,
,利用空间向量法表示出异面直线
与直线
所成的角的余弦值,从而求出
的值,即可确定
的位置.
解:(1)取
的中点为
,在平面
内作
,交
于点
.
因为
是正三角形,
所以
.
又因为
平面
,
平面
,
所以
.
又因为
,
平面
,
由
平面
,
,
所以直线
平面
.
如图,以
所在直线为
轴,
所在直线为
轴,
所在直线为
轴建立空间直角坐标系
.
则
,
,
,
,
,
,
.
设平面
的法向量
,
所以
,
,
即
,
取
,则
,
同理得平面
的法向量
,
设平面
与平面
所成的锐二面角为
,
则![]()
.
又因为
,
所以
.
所以平面
与平面
所成的锐二面角的大小为
.
![]()
(2)由点
为线段
上的一动点,可设
,
,
所以
,
.
由异面直线
与直线
所成角的大小为
,
得![]()
,
所以
,解得
或
.
所以
的位置可以是
,也可以是
.
科目:高中数学 来源: 题型:
【题目】新高考
最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这
科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的
名学生中随机抽取男生,女生各
人进行模拟选科.经统计,选择全理的人数比不选全理的人数多
人.
![]()
(1)请完成下面的
列联表;
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这
名学生中已经选取了男生
名,女生
名进行座谈,从中抽取
名代表作问卷调查,求至少抽到一名女生的概率.
附:
,其中
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为
与
具有线性回归关系,请帮他求出
关于
的线.性回归方程
(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出
与
的回归模型:
.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:
称为相应于点
的残差);
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差 | 0 | 0 | 0 | 0.14 | 0.1 | |
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:
.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占
,而男生有10人表示对冰球运动没有兴趣额.
(1)完成
列联表,并回答能否有
的把握认为“对冰球是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男 | 55 | ||
女 | |||
合计 |
(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.
附表:
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024> | 6.635 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
![]()
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的极值;
(2)对于曲线上的不同两点
,如果存在曲线上的点
,且
使得曲线在点
处的切线
,则称
为弦
的伴随直线,特别地,当
时,又称
为
的
—伴随直线.
①求证:曲线
的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线
,使得曲线
的任意一条弦均有
—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C过点M(1,
),两个焦点为A(﹣1,0),B(1,0),O为坐标原点.
(1)求椭圆C的方程;
(2)直线l过点A(﹣1,0),且与椭圆C交于P,Q两点,求△BPQ面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com