【题目】如图,已知椭圆
的左、右焦点分别为
,
,短轴的两端点分别为
,
,线段
,
的中点分别为
,
,且四边形
是面积为8的矩形.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
作直线
交椭圆于
,
两点,若
,求直线
的方程.
【答案】(1)
; (2)
或
.
【解析】
(I)通过矩形
的面积和对角线长相等列方程组,结合
,解得
的值,从而求得椭圆方程.(II)当直线
的斜率不存在时,直接得出直线
的方程,代入椭圆方程求得
两点的坐标,代入
验证出不符合题意.当直线
的斜率存在时,设出直线
的方程,联立直线的方程和椭圆的方程,化简后写出韦达定理,将坐标代入
,解方程求得直线
的斜率,由此求得直线
的方程.
(I)在矩形
中,![]()
所以四边形
是正方形,所以![]()
又![]()
,
∴椭圆C的方程为
.
(II)由(I)可知
,
1)当直线l的斜率不存在时,l的方程为x=-2,
由
![]()
![]()
∴l:x=-2不满足题意.
2)当l的斜率为k时,设l的方程为
,![]()
由![]()
则
![]()
![]()
![]()
综上所述,直线l的方程为
或![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,过点
的直线与椭圆
交于
两点,延长
交椭圆
于点
,
的周长为8.
![]()
(1)求
的离心率及方程;
(2)试问:是否存在定点
,使得
为定值?若存在,求
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,椭圆
的长轴长与焦距之比为
,过
的直线
与
交于
,
两点.
(1)当
的斜率为
时,求
的面积;
(2)当线段
的垂直平分线在
轴上的截距最小时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系
中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=
x2+10x(万元).当年产量不小于80千件时,C(x)=51x+
-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,E,F分别为A1C1和BC的中点,M,N分别为A1B和A1C的中点.求证:
![]()
(1)MN∥平面ABC;
(2)EF∥平面AA1B1B.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(﹣1,3),B(3,3)两点,且圆心C在直线x﹣y+1=0上.
(1)求圆C的方程;
(2)求经过圆上一点A(﹣1,3)的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( )
A.两件都是一等品的概率是![]()
B.两件中有1件是次品的概率是![]()
C.两件都是正品的概率是![]()
D.两件中至少有1件是一等品的概率是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率等于
.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com