【题目】三棱柱
中,侧棱与底面垂直,
,
,
分别是
的中点.
![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)求二面角
的余弦值.
【答案】⑴见解析
⑵见解析 ⑶![]()
【解析】
试题(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与论证往往需要利用平几知识,如本题就利用三角形中位线定理得
(2)利用空间向量证明线面垂直,实际就是以算代证,即先求平面的一个法向量,再利用
与法向量关系关系求证(3)求二面角的大小,一般利用空间向量的数量积求解,先建立恰当的空间直角坐标系,设立各点坐标,利用方程组解出各面的法向量,利用向量数量积求法向量的夹角余弦值,最后根据二面角与法向量夹角之间关系求值.
试题解析:(1)连接
,
,
![]()
在
中,∵
是
中点,∴
,
又∵
平面
,
∴
平面
.
(2)如图,以
为原点建立空间直角坐标系
.
![]()
则
,
,
,
,
,
,
,
.
设平面
的法向量
,
,
令
,则
,
,∴
,∴
,
∴
平面
.
(3)设平面
的法向量为
,
,
,
令
,则
,
,
∴
,
∴
,
所求二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点.求异面直线A1E与GF所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M,
(1)求过点M且到点P(0,4)的距离为2的直线l的方程;
(2)求过点M且与直线l3:x+3y+1=0平行的直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据:
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为
的雾霾天数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆
,定直线
,过
的一条动直线
与直线
相交于
,与圆
相交于
,
两点,
是
中点.
(Ⅰ)当
与
垂直时,求证:
过圆心
.
(Ⅱ)当
,求直线
的方程.
(Ⅲ)设
,试问
是否为定值,若为定值,请求出
的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线
与圆
相交于不同的两点
.
(1)求圆
的圆心坐标;
(2)求线段
的中点
的轨迹
的方程;
(3)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为
,则下列命题是真命题的是( )
A.p∧q
B.(p)∧q
C.p∧(q)
D.q
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com