对于函数
,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(Ⅰ)已知二次函数
,试判断
是否为“局部奇函数”?并说明理由;
(Ⅱ)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(Ⅲ)若
为定义域
上的“局部奇函数”,求实数
的取值范围.
(Ⅰ)是,理由详见解析;(Ⅱ)
;(Ⅲ)
.
解析试题分析:(Ⅰ)判断方程
是否有解;(Ⅱ)在方程
有解时,通过分离参数求取值范围;(Ⅲ)在不便于分离参数时,通二次函数的图象判断一元二次方程根的分布.
试题解析:解:
为“局部奇函数”等价于关于
的方程
有解.
(Ⅰ)当
时,
方程
即
有解
,
所以
为“局部奇函数”. 3分
(Ⅱ)当
时,
可化为
,
因为
的定义域为
,所以方程
在
上有解. 5分
令
,则
.
设
,则
,
当
时,
,故
在
上为减函数,
当
时,
,故
在
上为增函数,. 7分
所以
时,
.
所以
,即
. 9分
(Ⅲ)当
时,
可化为
.
设
,则
,
从而
在
有解即可保证
为“局部奇函数”. 11分
令
,
1° 当
,
在
有解,
由
,即
,解得
; 13分
2° 当
时,
在
有解等价于
解得
. 15分
(说明:也可转化为大根大于等于2求解)
综上,所求实数m的取值范围为
. 16分
考点:函数的值域、方程解的存在性的判定.
科目:高中数学 来源: 题型:解答题
设
是同时符合以下性质的函数
组成的集合:
①
,都有
;②
在
上是减函数.
(1)判断函数
和
(
)是否属于集合
,并简要说明理由;
(2)把(1)中你认为是集合
中的一个函数记为
,若不等式
对任意的
总成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义在
上的函数
同时满足以下条件:①函数
在
上是减函数,在
上是增函数;②
是偶函数;③函数
在
处的切线与直线
垂直.
(Ⅰ)求函数
的解析式;
(Ⅱ)设
,若存在
使得
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)当
时,求
在
上的最小值;
(2)若函数
在
上为增函数,求正实数
的取值范围;
(3)若关于
的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数
的图像在
处取得极值4.
(1)求函数
的单调区间;
(2)对于函数
,若存在两个不等正数![]()
,当
时,函数
的值域是
,则把区间
叫函数
的“正保值区间”.问函数
是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,直线
与函数
的图像都相切,且与函数
的图像的切点的横坐标为1.
(1)求直线
的方程及
的值;
(2)若
(其中
是
的导函数),求函数
的最大值;
(3)当
时,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函 数
.
(1)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于
都有
成立,试求
的取值范围;
(3)记
.当
时,函数
在区间
上有两个零点,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com