设
是同时符合以下性质的函数
组成的集合:
①
,都有
;②
在
上是减函数.
(1)判断函数
和
(
)是否属于集合
,并简要说明理由;
(2)把(1)中你认为是集合
中的一个函数记为
,若不等式
对任意的
总成立,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数
,
恒过定点 (3,2).
(1)求实数
;
(2)在(1)的条件下,将函数
的图象向下平移1个单位,再向左平移
个单位后得到函数
,设函数
的反函数为
,求
的解析式;
(3)对于定义在[1,9]的函数
,若在其定义域内,不等式
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数
,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(Ⅰ)已知二次函数
,试判断
是否为“局部奇函数”?并说明理由;
(Ⅱ)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(Ⅲ)若
为定义域
上的“局部奇函数”,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com