已知函数
=
,其中a≠0.
(1)若对一切x∈R,
≥1恒成立,求a的取值集合.
(2)在函数
的图像上取定两点
,![]()
,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使
成立?若存在,求
的取值范围;若不存在,请说明理由.
(1)
的取值集合为
.
(2)存在
使
成立.且
的取值范围为
.
解析试题分析:(Ⅰ)若
,则对一切
,![]()
,这与题设矛盾,又
,故
.
而
令![]()
当
时,
单调递减;当
时,
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
即
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,![]()
令
则![]()
![]()
令
,则
.
当
时,
单调递减;当
时,
单调递增.
故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使![]()
单调递增,故这样的
是唯一的,且
.故当且仅当
时,
.
综上所述,存在
使
成立.且
的取值范围为
.
考点:导数的运用
点评:主要是考查了导数在研究函数最值,以及函数的最值的运用,属于难度题。
科目:高中数学 来源: 题型:解答题
已知
,直线
与函数
的图像都相切,且与函数
的图像的切点的横坐标为1.
(1)求直线
的方程及
的值;
(2)若
(其中
是
的导函数),求函数
的最大值;
(3)当
时,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函 数
.
(1)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于
都有
成立,试求
的取值范围;
(3)记
.当
时,函数
在区间
上有两个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax3+bx2-x(x∈R,a、b是常数,a≠0),且当x=1和x=2时,函数f(x)取得极值.(I)求函数f(x)的解析式;
(Ⅱ)若曲线y=f(x)与g(x)=![]()
有两个不同的交点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com