已知两定点
,
,动点
满足
,由点
向
轴作垂线段
,垂足为
,点
满足
,点
的轨迹为
.
(1)求曲线
的方程;
(2)过点
作直线
与曲线
交于
,
两点,点
满足
(
为原点),求四边形
面积的最大值,并求此时的直线
的方程.
(1)
(2) 直线
的方程为![]()
解析试题分析:解(1)
动点P满足
,
点P的轨迹是以E F为直径的圆,
动点P的轨迹方程为
.设M(x,y)是曲线C上任一点,因为PM
x轴,
,
点P的坐标为(x,2y),
点P在圆
上,
,
曲线C的方程是
.
(2)因为
,所以四边形OANB为平行四边形,
当直线
的斜率不存在时显然不符合题意;
当直线
的斜率存在时,设直线
的方程为y=kx-2,
与椭圆交于
两点,由
得![]()
,由
,得
,即![]()
![]()
![]()
10分
令![]()
![]()
,
,解得
,
满足
,
,(当且仅当
时“=”成立)
,
当
平行四边形OANB面积的最大值为2.
所求直线
的方程为![]()
考点:圆锥曲线方程的求解和运用
点评:主要是考查了运用代数的方法来通过向量的数量积的公式,以及联立方程组,结合韦达定理来求解,属于中档题。
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.![]()
(Ⅰ)若点G的横坐标为
,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.
试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
中心在坐标原点,焦点在
轴上的椭圆的离心率为
,且经过点
。若分别过椭圆的左右焦点
、
的动直线
、
相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.![]()
(1)求椭圆的方程;
(2)是否存在定点M、N,使得
为定值.若存在,求出M、N点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线
的焦点
作倾斜角为
的直线交抛物线于
、
两点,过点
作抛物线的切线
交
轴于点
,过点
作切线
的垂线交
轴于点
。![]()
(1) 若
,求此抛物线与线段
以及线段
所围成的封闭图形的面积。
(2) 求证:
;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线和椭圆都经过点
,它们在
轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点
,点
都满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
双曲线
=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为
,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足
·
=0,且|
|=10,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆
的中心在原点,焦点在
轴上,短轴的一个端点与左右焦点
、
组成一个正三角形,焦点到椭圆上的点的最短距离为
.
(1)求椭圆
的方程;
(2)过点
作直线
与椭圆
交于
、
两点,线段
的中点为
,求直线
的斜率
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com