【题目】已知椭圆
.
(Ⅰ)若
的一个焦点为
,且点
在
上,求椭圆
的方程;
(Ⅱ)已知
上有两个动点
,
为坐标原点,且
,求线段
的最小值(用
表示).
科目:高中数学 来源: 题型:
【题目】为了释放学生压力,某校高三年级一班进行了一个投篮游戏,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮).在相同的条件下,每轮甲乙两人站在同一位置上,甲先投,每人投一次篮,两人有
人命中,命中者得
分,未命中者得
分;两人都命中或都未命中,两人均得
分.设甲每次投篮命中的概率为
,乙每次投篮命中的概率为
,且各次投篮互不影响.
(1)经过
轮投篮,记甲的得分为
,求
的分布列及期望;
(2)若经过
轮投篮,用
表示第
轮投篮后,甲的累计得分低于乙的累计得分的概率.
①求
;
②规定
,经过计算机模拟计算可得
,请根据①中
值求出
的值,并由此求出数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,设直线
过椭圆
的上顶点和右焦点,坐标原点
到直线
的距离为2.
(1)求椭圆
的方程.
(2)过点
且斜率不为零的直线交椭圆
于
,
两点,在
轴的正半轴上是否存在定点
,使得直线
,
的斜率之积为非零的常数?若存在,求出定点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面α∩平面β=l,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D直线l,M,N分别是线段AB,CD的中点.下列判断正确的是( )
![]()
A.若AB
CD,则MN
l
B.若M,N重合,则AC
l
C.若AB与CD相交,且AC
l,则BD可以与l相交
D.若AB与CD是异面直线,则MN不可能与l平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈三中总务处的老师要购买学校教学用的粉笔,并且有非常明确的判断一盒粉笔是“优质产品”和“非优质产品”的方法.某品牌的粉笔整箱出售,每箱共有20盒,根据以往的经验,其中会有某些盒的粉笔为非优质产品,其余的都为优质产品.并且每箱含有0,1,2盒非优质产品粉笔的概率为0.7,0.2和0.1.为了购买该品牌的粉笔,校总务主任设计了一种购买的方案:欲买一箱粉笔,随机查看该箱的4盒粉笔,如果没有非优质产品,则购买,否则不购买.设“买下所查看的一箱粉笔”为事件
,“箱中有
件非优质产品”为事件
.
(1)求
,
,
;
(2)随机查看该品牌粉笔某一箱中的四盒,设
为非优质产品的盒数,求
的分布列及期望;
(3)若购买100箱该品牌粉笔,如果按照主任所设计方案购买的粉笔中,箱中每盒粉笔都是优质产品的箱数的期望比随机购买的箱中每盒粉笔都是优质产品的箱数的期望大10,则所设计的方案有效.讨论该方案是否有效.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为进一步深化“平安校园”创建活动,加强校园安全教育宣传,某高中对该校学生进行了安全教育知识测试(满分100分),并从中随机抽取了200名学生的成绩,经过数据分析得到如图1所示的频数分布表,并绘制了得分在
以及
的茎叶图,分别如图23所示.
成绩 |
|
|
|
|
|
|
|
频数 | 5 | 30 | 40 | 50 | 45 | 20 | 10 |
图1
![]()
(1)求这200名同学得分的平均数;(同组数据用区间中点值作代表)
(2)如果变量
满足
且
,则称变量
“近似满足正态分布
的概率分布”.经计算知样本方差为210,现在取
和
分别为样本平均数和方差,以样本估计总体,将频率视为概率,如果该校学生的得分“近似满足正态分布
的概率分布”,则认为该校的校园安全教育是成功的,否则视为不成功.试判断该校的安全教育是否成功,并说明理由.
(3)学校决定对90分及以上的同学进行奖励,为了体现趣味性,采用抽奖的方式进行,其中得分不低于94的同学有两次抽奖机会,低于94的同学只有一次抽奖机会,每次抽奖的奖金及对应的概率分别为:
奖金 | 50 | 100 |
概率 |
|
|
现在从不低于90同学中随机选一名同学,记其获奖金额为
,以样本估计总体,将频率视为概率,求
的分布列和数学期望.
(参考数据:
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com