科目:高中数学 来源: 题型:解答题
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1(a>b>0)的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-
,求斜率k的值;
②已知点M(-
,0),求证:
·
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,
分别是椭圆
的左右焦点,M是C上一点且
与x轴垂直,直线
与C的另一个交点为N.
(1)若直线MN的斜率为
,求C的离心率;
(2)若直线MN在y轴上的截距为2,且
,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,
为椭圆在
轴正半轴上的焦点,
、
两点在椭圆
上,且
,定点
.
(1)求证:当
时
;
(2)若当
时有
,求椭圆
的方程;
(3)在(2)的椭圆中,当
、
两点在椭圆
上运动时,试判断
是否有最大值,若存在,求出最大值,并求出这时
、
两点所在直线方程,若不存在,给出理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点
的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆
上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过
且与AB垂直的直线交椭圆于P、Q,若
的面积是20,求此时椭圆的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与该椭圆交于两个不同点
、
,且直线
、
、
的斜率依次成等比数列.
(1)求椭圆C的方程;
(2)求直线
的斜率
;
(3)求
面积的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com