已知椭圆
的离心率为
,点
在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点
的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.
(1)椭圆C方程是
;(2)G的横坐标的值为8.
解析试题分析:(1)由
,又点
在椭圆上,所以
,这样便得一方程组,解这个方程组求出a、b的值,即可得椭圆C的方程;(2)首先考虑直线MN垂直于
轴的情况,易得此时交点为
,由此可知,点G的横坐标应当为8.当直线MN不垂直
轴时,设直线MN:
,
.由A、N、G三点共线有
,由A、N、G三点共线有
,有![]()
,即![]()
,化简
,当
时化简得
.接下来联立直线MN与椭圆方程再用韦达定理代入此等式验证即可.
(1)由
,又点
在椭圆上,所以
解得
,则椭圆C方程是
; .3分
(2)当直线MN垂直于
轴,交点为
,
由题知直线AN:
,直线MB:
,交点
.5分
当直线MN不垂直
轴时,设直线MN:
,![]()
联立直线MN与椭圆方程得![]()
, .7分
因为
,由A、N、G三点共线有![]()
同理
,由A、N、G三点共线有![]()
有![]()
,即![]()
,化简
,验证当
时化简得
带入韦达定理恒成立,因此G的横坐标的值为8. 13分
考点:1、轨迹方程的求法;2、直线与圆锥曲线的关系.
科目:高中数学 来源: 题型:解答题
已知双曲线
-y2=1的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
圆
的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).
(1)求点P的坐标;
(2)焦点在x轴上的椭圆C过点P,且与直线
交于A,B两点,若
的面积为2,求C的标准方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知P是圆M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当m=
时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,
为定值?若存在,求出定点和定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆的焦点在
轴上,离心率为
,且经过点
.
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆
,设
为圆
上不在坐标轴上的任意一点,
为
轴上一点,过圆心
作直线
的垂线交椭圆右准线于点
.问:直线
能否与圆
总相切,如果能,求出点
的坐标;如果不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,两个焦点为
,
.
(1)求椭圆
的方程;
(2)
,
是椭圆
上的两个动点,如果直线
的斜率与
的斜率互为相反数,证明直线
的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(已知抛物线
(
)的准线与
轴交于点
.
(1)求抛物线的方程,并写出焦点坐标;
(2)是否存在过焦点的直线
(直线与抛物线交于点
,
),使得三角形
的面积
?若存在,请求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com