精英家教网 > 高中数学 > 题目详情
定义:关于x的两个不等式f(x)<0和g(x)<0的解集分别为(a,b)和(
1
b
1
a
)
,则称这两个不等式为对偶不等式.如果不等式x2-4
3
xcos2θ+2<0
与不等式2x2+4xsin2θ+1<0为对偶不等式,且θ∈(
π
2
,π)
,则θ=
 
分析:先设出不等式x2-4
3
xcos2θ+2<0
的对应方程两个根为a、b,
推出不等式x2-4
3
xcos2θ+2<0
的对应方程两个根为a、b,
利用韦达定理,求得关于θ的三角方程,根据θ的范围求解即可.
解答:解:不等式x2-4
3
xcos2θ+2<0
与不等式2x2+4xsin2θ+1<0为对偶不等式,
设不等式x2-4
3
xcos2θ+2<0
的对应方程两个根为a、b,
则不等式2x2+4xsin2θ+1<0对应方程两个根为:
1
a
、 
1
b

所以-2sin2θ=
1
a
+
1
b
=
a+b
ab
=
4
3
cos2θ
2

即:tan2θ=-
3
因为θ∈(
π
2
,π)
,所以θ=
6

故答案为:
6
点评:本题是新定义的创新题,考查逻辑思维能力,考查韦达定理等有关知识,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线y=x与两个“相似椭圆”M:
x2
a2
+
y2
b2
=1
Mλ
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+ax+b
图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-2|2|x|-1|+1和g(x)=x2-2|x|+m(m∈R)是定义在R上的两个函数,则下列命题正确的是(  )

查看答案和解析>>

同步练习册答案