精英家教网 > 高中数学 > 题目详情

 设数列的前n项和为,数列满足: ,且数列的前

n项和为.

(1) 求的值;

(2) 求证:数列是等比数列;

(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.

 

 

 

 

 

 

【答案】

 解:(1)由题意得: ;………………1分

当n=1时,则有: 解得: ;

当n=2时,则有: ,即,解得: ;

………………2分

(2) 由 ① 得:

 ②  ………………3分

② - ①得: ,

即:  即:; ……………5分

,由知:

数列是以4为首项,2为公比的等比数列.…………………………………8分

(3)由(2)知: ,即……………………9分

当n≥2时, 对n=1也成立,

(n………………………………………………………….…10分

数列,它的奇数项组成以4为首项、公比为8的等比数列;偶数项组成以8为首项、公比为8的等比数列;…………………11分

当n=2k-1 时,

                                                        …………………14分

当n=2k 时,

.……………………………………………………………16分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1为a(a∈R)设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式及Sn
(Ⅱ)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的首项为a(a∈R,a≠0).设数列的前n项和为Sn,且对任意正整数n都有
a2n
an
=
4n-1
2n-1

(1)求数列{an}的通项公式及Sn
(2)是否存在正整数n和k,使得Sn,Sn+1,Sn+k成等比数列?若存在,求出n和k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项为4,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(1)求数列{an}的通项公式an及Sn
(2)记An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
a2n-1
,当n≥2时,试比较An与Bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的首项a1=a,a∈N*,设数列的前n项和为Sn,且
1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011届广西省桂林中学高三11月月考数学文卷 题型:解答题

(本小题满分12分)设数列的前n项和为Sn=2n2为等比数列,且(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前n项和Tn.

查看答案和解析>>

同步练习册答案