精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆过点且离心率为

1)求椭圆的方程;

2)如图所示,设椭圆的右顶点为是椭圆上异于点的两点,直线的斜率分别为,若,试判断直线是否经过一个定点?若是,则求出该定点的坐标;若不是,请说明理由.

【答案】12)是,直线过定点

【解析】

1)由题意结合椭圆的性质可得,解出后即可得解;

2)设直线的方程为,联立方程可得,由题意可得,化简后可得,分别代入直线方程即可得解.

1)由题意可得,解得

则椭圆的方程为

2)由题意,直线的斜率存在,

设直线的方程为

联立

直线的斜率分别为

化简得

化简得,即

解得

代入中,解得

时,直线的方程为,直线过定点

时,直线的方程为,直线过定点,不符合题意.

故直线过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于两点,且(其中为坐标原点),若椭圆的离心率满足,则椭圆长轴的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜率为的直线过抛物线的焦点,且与拋物线交于两点.

1)设点在笫一象限,过作拋物线的准线的垂线,为垂足,且,求点的坐标;

2)过且与垂直的直线与圆交于两点,若面积之和为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.

)求这两个班学生成绩的中位数及x的值;

)如果将这些成绩分为优秀(得分在175分 以上,包括175分)和过关,若学校再从这两个班获得优秀成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原,如图所示,平行四边形形状的纸片是由六个边长为的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______;若该六面体内有一球,则该球体积的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生物公司将A型病毒疫苗用100只小白鼠进行科研和临床试验,得到统计数据如表:

未感染病毒

感染病毒

总计

未注射

10

x

A

注射

40

y

B

总计

50

50

100

现从所有试验的小白鼠中任取一只,取得注射疫苗小白鼠的概率为

1)能否有99.9%的把握认为注射此型号疫苗有效?

2)现从感染病毒的小白鼠中任取3只进行病理分析,记已注射疫苗的小白鼠只数为ξ,求ξ的分布列和数学期望.

附:

PK2k0

0.10

0.010

0.001

k0

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足不等式组的最大值是(

A.15B.C.D.33

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,其左、右两个焦点分别为,短轴的一个端点为,且.

1)求的平分线所在的直线方程;

2)设直线与椭圆交于不同的两点.为坐标原点,若,求的面积的最大值.

查看答案和解析>>

同步练习册答案