【题目】已知
是圆
上任意一点,过
作
轴的垂线段
,
为垂足.当点
在圆
上运动时,线段
中点
的轨迹为曲线
(包括点
和点
),
为坐标原点.
(Ⅰ)求曲线
的方程;
(Ⅱ)直线
与曲线
相切,且
与圆
相交于
两点,当
的面积最大时,试求直线
的方程.
科目:高中数学 来源: 题型:
【题目】已知定义在
上的奇函数
满足
,且在
上是增函数;
定义行列式
; 函数
(其中
).
(1) 证明: 函数
在
上也是增函数;
(2) 若函数
的最大值为4,求
的值;
(3) 若记集合M={m|恒有g(
)<0},
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求{an}的通项公式.
(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均不相等的等差数列{an}的前n项和为Sn,S10=45,且a3,a5,a9恰为等比数列{bn}的前三项,记
.
(1)分别求数列{an}、{bn}的通项公式;
(2)若m=17,求cn取得最小值时n的值;
(3)当c1为数列{cn}的最小项时,
有相应的可取值,我们把所有am的和记为A1;…;当ci为数列
的最小项时,
有相应的可取值,我们把所有am的和记为Ai;…,令Tn= A1+ A2+…+An,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点A(2,0),B(0,4),若其欧拉线的方程为x-y+2=0,则顶点C的坐标是( )
A. (-4,0) B. (0,-4) C. (4,0) D. (4,0)或(-4,0)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是公差不为零的等差数列,
是等比数列,且
,
,
.
(1)求数列
,
的通项公式;
(2)记
,求数列
的前
项和
;
(3)若满足不等式
成立的
恰有
个,求正整数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和是Sn,且Sn
=1(n∈N),数列{bn}是公差d不等于0的等差数列,且满足:b1=
,而b2,b5,ba14成等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com