精英家教网 > 高中数学 > 题目详情
已知正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求异面直线AE与DD1所成角的大小(结果用反三角表示);   (2)求四面体AED1D的体积.

【答案】分析:(1)取AA1的中点为F,连接EF,根据D1D∥AA1则∠FAE为异面直线AE与DD1所成角,在三角形∠FAE中求出此角的正切值,最后用反三角表示即可;
(2)由题意可知点E到侧面ADD1A1的距离为2,然后根据等体积法可知V A-ED1D=V E-AD1D,最后利用锥体的体积公式进行求解即可.
解答:解:(1)取AA1的中点为F,连接EF
∵D1D∥AA1
∴∠FAE为异面直线AE与DD1所成角
AA1=2,则AF=1,EF=
∴tan∠FAE=则∠FAE=arctan
(2)S△AD1D==2,点E到侧面ADD1A1的距离为2
V A-ED1D=V E-AD1D=×2×2=
∴四面体AED1D的体积为
点评:本题主要考查了异面直线及其所成的角,以及四面体的体积的度量,同时考查了空间想象能力,转化与化归运用是解决本题的关键,易错求体积时不要忘了乘
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案