(本小题满分12分)
已知椭圆
的右焦点
,且
,设短轴的一个端点为
,原点
到直线
的距离为
,过原点和
轴不重合的直线与椭圆
相交于
两点,且
.
(1)求椭圆
的方程;
(2)是否存在过点
的直线
与椭圆
相交于不同的两点
,且使得
成立?若存在,试求出直线
的方程;若不存在,请说明理由
科目:高中数学 来源: 题型:解答题
圆C的圆心在y轴上,且与两直线l1:
;l2:
均相切.
(I)求圆C的方程;
(II)过抛物线
上一点M,作圆C的一条切线ME,切点为E,且
的最小值为4,求此抛物线准线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设圆C:
,此圆与抛物线![]()
有四个不同的交点,若在
轴上方的两交点分别为
,
,坐标原点为
,
的面积为
。
(1)求实数
的取值范围;
(2)求
关于
的函数
的表达式及
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,设点
、
分别是椭圆
的左、右焦点,
为椭圆
上任意一点,且
最小值为
.![]()
(1)求椭圆
的方程;
(2)若动直线
均与椭圆
相切,且
,试探究在
轴上是否存在定点
,点
到
的距离之积恒为1?若存在,请求出点
坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心为坐标原点
,一个长轴端点为
,短轴端点和焦点所组成的四边形为正方形,若直线
与
轴交于点
,与椭圆
交于不同的两点
,且
。(14分)
(1)求椭圆
的方程;
(2)求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分为12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为
.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段
所成的比为2,求线段AB所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知抛物线
:
和点
,若抛物线
上存在不同两点
、
满足
.
(I)求实数
的取值范围;
(II)当
时,抛物线
上是否存在异于
的点
,使得经过
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,已知抛物线
的焦点为
.过点
的直线交抛物线于
,
两点,直线
,
分别与抛物线交于点
,
.![]()
(Ⅰ)求
的值;
(Ⅱ)记直线
的斜率为
,直线
的斜率为
.证明:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
设椭圆![]()
(
)的两个焦点是
和
(
),且椭圆
与圆
有公共点.
(1)求
的取值范围;
(2)若椭圆上的点到焦点的最短距离为
,求椭圆的方程;
(3)对(2)中的椭圆
,直线![]()
(
)与
交于不同的两点
、
,若线段
的垂直平分线恒过点
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com