【题目】设抛物线
,点
,
,过点
的直线
与
交于
,
两点.
(1)当
与
轴垂直时,求直线
的方程;
(2)证明:
.
【答案】(1) y=
或
.
(2)见解析.
【解析】分析:(1)首先根据
与
轴垂直,且过点
,求得直线l的方程为x=1,代入抛物线方程求得点M的坐标为
或
,利用两点式求得直线
的方程;
(2)分直线l与x轴垂直、l与x轴不垂直两种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.
详解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,–2).
所以直线BM的方程为y=
或
.
(2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.
当l与x轴不垂直时,设l的方程为
,M(x1,y1),N(x2,y2),则x1>0,x2>0.
由
得ky2–2y–4k=0,可知y1+y2=
,y1y2=–4.
直线BM,BN的斜率之和为
.①
将
,
及y1+y2,y1y2的表达式代入①式分子,可得
.
所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.
综上,∠ABM=∠ABN.
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到
辆/千米时,造成堵塞,此时车流速度为
;当车流密度不超过
辆/千米时,车流速度为
千米/小时,研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式;
(2)当车流密度
为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 .
![]()
(Ⅰ)求进入决赛的人数;
(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记
表示两人中进入决赛的人数,求
的分布列及数学期望;
(Ⅲ) 经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥
中,
,
,E为PC的中点,
,![]()
![]()
(1)求证:![]()
(2)若
与面ABCD所成角为
,P在面ABCD射影为O,问是否在BC上存在一点F,使面
与面PAB所成的角为
,若存在,试求点F的位置,不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
)的焦点F,E上一点
到焦点的距离为4.
(1)求抛物线E的方程;
(2)过F作直线l交抛物线E于A,B两点,若直线AB中点的纵坐标为
,求直线l的方程及弦
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知圆
及点
,
.
(1)若直线
平行于
,与圆
相交于
,
两点,
,求直线
的方程;
(2)在圆
上是否存在点
,使得
?若存在,求点
的个数;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在“应用
”的用户中随机抽取了100名用户进行调查得到如下数据:
每周使用时间 |
|
|
|
|
|
|
男 | 4 | 3 | 3 | 7 | 6 | 30 |
女 | 6 | 5 | 4 | 4 | 8 | 20 |
合计 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用该“应用
”时间不超过
的样本中,按性别分层抽样,随机抽取5名用户:
①求抽取的5名用户中男,女用户各多少人;
②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.
(2)如果每周使用该“应用
”超过
的用户认为“喜欢该应用”,能否在犯错误的概率不超过0.05的前提下认为“喜欢该应用”与性别有关.
参考公式:
,其中![]()
下面的临界值表仅供参考:
| 0.10 | 0.05 | 0.01 |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com