【题目】某工厂加工某种零件需要经过
,
,
三道工序,且每道工序的加工都相互独立,三道工序加工合格的概率分别为
,
,
.三道工序都合格的零件为一级品;恰有两道工序合格的零件为二级品;其它均为废品,且加工一个零件为二级品的概率为
.
(1)求
;
(2)若该零件的一级品每个可获利200元,二级品每个可获利100元,每个废品将使工厂损失50元,设一个零件经过三道工序加工后最终获利为
元,求
的分布列及数学期望.
科目:高中数学 来源: 题型:
【题目】过抛物线C:x2=4y的准线上任意一点P作抛物线的切线PA,PB,切点分别为A,B,则A点到准线的距离与B点到准线的距离之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,
过
点作
的垂线交
的延长线于点
,
.连结
交
于点
,如图1,将
沿
折起,使得点
到达点
的位置.如图2.
证明:直线![]()
平面![]()
若
为
的中点,
为
的中点,且平面
平面
求三棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为等差数列,各项为正的等比数列
的前
项和为
,
,
,__________.在①
;②
;③
这三个条件中任选其中一个,补充在横线上,并完成下面问题的解答(如果选择多个条件解答,则以选择第一个解答记分).
(1)求数列
和
的通项公式;
(2)求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=-b,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)e-x,求函数g(x)的极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com