【题目】某射击运动员在比赛前进行三周的封闭训练,教练员将其每天成绩的均值数据整理,并绘成条形图如下,
![]()
根据该图,下列说法错误的是:( )
A.第三周平均成绩最好B.第一周平均成绩比第二平均成绩好
C.第一周成绩波动较大D.第三周成绩比较稳定
科目:高中数学 来源: 题型:
【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.
(1)根据题意,请将下面的
列联表填写完整;
选择“西游传说” | 选择“千古蝶恋” | 总计 | |
成年人 | |||
未成年人 | |||
总计 |
(2)根据列联表的数据,判断是否有
的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:
(
).
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R的奇函数
满足
,且
时,
,下面四种说法①
;②函数
在[-6,-2]上是增函数;③函数
关于直线
对称;④若
,则关于
的方程
在[-8,8]上所有根之和为-8,其中正确的序号__________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下,计成绩不低于90分者为“成绩优秀”.
![]()
(1)从乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率.
(2)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
![]()
附:临界值表
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有
两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:
使用寿命年数 | 5年 | 6年 | 7年 | 8年 | 总计 |
| 10 | 20 | 45 | 25 | 100 |
| 15 | 35 | 40 | 10 | 100 |
(1)填写下表,并判断是否有
的把握认为出租车的使用寿命年数与汽车车型有关?
使用寿命不高于 | 使用寿命不低于 | 总计 | |
| |||
| |||
总计 |
(2)司机师傅小李准备在一辆开了
年的
型车和一辆开了
年的
型车中选择,为了尽最大可能实现
年内(含
年)不换车,试通过计算说明,他应如何选择.
附:
,
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:
甲公司员工
:410,390,330,360,320,400,330,340,370,350
乙公司员工
:360,420,370,360,420,340,440,370,360,420
每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根据题中数据写出甲公司员工
在这10天投递的快件个数的平均数和众数;
(2)为了解乙公司员工
每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为
(单位:元),求
的分布列和数学期望;
(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数).以直角坐标系的原点
为极点,
轴的正半轴为极轴建立坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若过点
的直线
与
交于
,
两点,与
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年3月份,上海出台了《关于建立完善本市生活垃圾全程分类体系的实施方案》,4月份又出台了《上海市生活垃圾全程分类体系建设行动计划(2018-2020年)》,提出到2020年底,基本实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了“垃圾分类,从我做起”生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.
(1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民和女性居民人数相同,男性居民中不喜欢担任垃圾分类志愿者占男性居民的
,女性居民中不喜欢担任垃圾分类志愿者占女性居民的
,若研究得到在犯错误概率不超过0.010的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关,则被调查的女性居民至少多少人?
附
,
,
| 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)某垃圾站的日垃圾分拣量
(千克)与垃圾分类志愿者人数
(人)满足回归直线方程
,数据统计如下:
志愿者人数 | 2 | 3 | 4 | 5 | 6 |
日垃圾分拣量 | 25 | 30 | 40 | 45 |
|
已知
,
,
,根据所给数据求
和回归直线方程
,附:
,
.
(3)用(2)中所求的线性回归方程得到与
对应的日垃圾分拣量的估计值
.当分拣数据
与估计值
满足
时,则将分拣数据
称为一个“正常数据”.现从5个分拣数据中任取3个,记
表示取得“正常数据”的个数,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com