精英家教网 > 高中数学 > 题目详情
已知F1,F2是椭圆(a>b>0)的左、右焦点,点P(-1,)在椭圆上,线段PF2与y轴的交点M满足
(1)求椭圆的标准方程;
(2)过F1作不与x轴重合的直线l,l与圆x2+y2=a2+b2相交于A、B。并与椭圆相交于C、D,当=λ,且λ∈[,1]时,求△F2CD的面积S的取值范围。
解:(1)∵
∴M是线段PF2的中点
∴OM是△PF1F2的中位线
又OM⊥F1F2
∴PF1⊥F1F2

解得
∴椭圆方程为
(2)设l方程为










S关于M在上是减函数
所以
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案