精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,椭圆的离心率为,双曲线的渐近线与椭圆的交点到原点的距离均为.

1)求椭圆的标准方程;

2)若点为椭圆上的动点,三点共线,直线的斜率分别为.

i)证明:

ii)若,设直线过点,直线过点,证明:为定值.

【答案】12)(i)证明见解析;(ii)证明见解析;

【解析】

1)设渐近线与椭圆交点为,根据到原点的距离和在椭圆上可得到关于的方程,结合离心率即可求得,进而得到椭圆方程;

2)由关于原点对称可假设坐标;

i)利用在椭圆上,满足椭圆方程,代入中化简整理可得结论;

ii)求得后,将直线方程与椭圆方程联立得到韦达定理的形式,利用可得到所求定值.

1)设椭圆的半焦距为,由题意知:…①,

双曲线的渐近线方程为

可设双曲线的渐近线与椭圆在第一象限的交点为

,解得:.

在椭圆上,,即:…②,

由①②解得:

椭圆的标准方程为:.

2)由题意知:关于原点对称,则可设.

i在椭圆上,

.

ii)不妨设

直线过点,直线过点

直线

得:

得:

,即

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界第一产粮大国,我国粮食产量很高,整体很安全按照14亿人口计算,中国人均粮食产量约为950斤﹣比全球人均粮食产量高了约250斤.如图是中国国家统计局网站中20102019年,我国粮食产量(千万吨)与年末总人口(千万人)的条形图,根据如图可知在20102019年中( )

A.我国粮食年产量与年末总人口均逐年递增

B.2011年我国粮食年产量的年增长率最大

C.2015年﹣2019年我国粮食年产量相对稳定

D.2015年我国人均粮食年产量达到了最高峰

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若f(x)[02]上是单调函数,求a的值;

2)已知对[12]f(x)≤1均成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)经过两点.O为坐标原点,且的面积为.过点且斜率为k)的直线l与椭圆C有两个不同的交点MN,且直线分别与y轴交于点ST.

(Ⅰ)求椭圆C的方程;

(Ⅱ)求直线l的斜率k的取值范围;

(Ⅲ)设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:

完成以下问题:

(Ⅰ)补全频率分布直方图并求nap的值;

(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1.四边形是边长为10的菱形,其对角线,现将沿对角线折起,连接,形成如图2的四面体,则异面直线所成角的大小为______.在图2中,设棱的中点为的中点为,若四面体的外接球的球心在四面体的内部,则线段长度的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD是矩形,A1DAD1交于点EAA1AD2AB4.

1)证明:AE⊥平面ECD.

2)求直线A1C与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,直线l不过原点O且不平行于坐标轴,l与E有两个交点A,B,线段AB的中点为M.

,点K在椭圆E上,分别为椭圆的两个焦点,求的范围;

证明:直线OM的斜率与l的斜率的乘积为定值;

若l过点,射线OM与椭圆E交于点P,四边形OAPB能否为平行四边形?若能,求此时直线l斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在圆锥内放两个大小不同且不相切的球,使得它们分别与圆锥的侧面、底面相切,用与两球都相切的平面截圆锥的侧面得到截口曲线是椭圆.理由如下:如图(2),若两个球分别与截面相切于点,在得到的截口曲线上任取一点,过点作圆锥母线,分别与两球相切于点,由球与圆的几何性质,得,所以,且,由椭圆定义知截口曲线是椭圆,切点为焦点.这个结论在圆柱中也适用,如图(3),在一个高为,底面半径为的圆柱体内放球,球与圆柱底面及侧面均相切.若一个平面与两个球均相切,则此平面截圆柱所得的截口曲线也为一个椭圆,则该椭圆的离心率为______.

查看答案和解析>>

同步练习册答案