【题目】已知函数
.
(1)求
的单调区间;
(2)若
且
时,
恒成立,求
的范围.
【答案】(1)答案见解析;(2)
.
【解析】试题分析:(1)先求了函数f(x)的定义域和导数,构造函数
,g(x)=x2+2(1-a)x+1,由此利用导数性质和分类讨论思想能求出函数f(x)的单调区间.
(2)“当x>0,且x≠1时,恒成立”,等价于“当x>0,且x≠1时,
恒成立”,构造函数h(x)=f(x)-a,由此利用导数性质和分类讨论思想能求出实数a的取值范围.
试题解析:(1) ![]()
令
![]()
当
时,
,
![]()
当
时,
,
![]()
当
时,
两根为
,
![]()
,
,
,
,
, ![]()
,
, ![]()
综上当
时,
区间为![]()
当
时,
区间
,
区间![]()
(2)即证![]()
整理得![]()
即证
时, ![]()
时, ![]()
令
, ![]()
当
时,
,
在
, ![]()
时, ![]()
时,
满足题意
当
时,
, ![]()
时,
不合题意
综上![]()
科目:高中数学 来源: 题型:
【题目】已知城
和城
相距
,现计划以
为直径的半圆上选择一点
(不与点
,
重合)建造垃圾处理厂.垃圾处理厂对城市的影响度与所选地点到城市的距离有关,对城
和城
的总影响度为对城
与城
的影响度之和.记点到
城
的距离为
,建在
处的垃圾处理厂对城
和城
的总影响度为
.统计调查表明:垃圾处理厂对城
的影响度与所选地点到城
的距离的平方成反比例关系,比例系数为4;对城
的影响度与所选地点到城
的距离的平方成反比例关系,比例系数为
.当垃圾处理厂建在
的中点时,对城
和城
的总影响度为0.065.
(1)将
表示成
的函数.
(2)讨论(1)中函数的单调性,并判断在
上是否存在一点,使建在此处的垃圾处理厂对城
和城
的总影响度最小?若存在,求出该点到城
的距离;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
为参数).它与曲线
交于
两点.
(1)求
的长;
(2)在以
为极点,
轴的正半轴为极轴建立极坐标系,设点
的极坐标为
,求点
到线段
中点
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
⑴写出
列联表;⑵判断产品是否合格与设备改造是否有关,说明理由.
附:
,
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格
关于时间
的函数关系式;(
表示投放市场的第
天);
(2)销售量
与时间
的函数关系:
,则该产品投放市场第几天销售额最高?最高为多少千元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
,
)的一系列对应最值如表:
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据表格提供的数据求函数
的解析式;
(2)求函数
的单调递增区间和对称轴;
(3)若当
时,方程
恰有两个不同的解,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com